Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it describes the use of radiopharmaceuticals in molecular imaging, clinical, and research studies. The text then covers modern radiation detectors and measuring methods, including those used in nuclear imaging, as well as numerous imaging methodologies and models, such as two- and three-dimensional image reconstruction algorithms, data processing sequences, new nuclear oncology techniques, and physiological models of the central nervous system. It also introduces biological systems theory, nuclear medicine methods as systems theory procedures, and aspects of kinetic modeling. The final chapter explores dosimetry and the biological effects of ionizing radiation. With many new developments occurring in nuclear medicine, it is important to understand how advanced approaches are being used in emerging applications. Offering invaluable insight into this growth, Nuclear Medicine Physics provides in-depth descriptions of new radiolabeled biological drugs, new cell labeling techniques, new technical concepts in radiation detection, improvements in instrumentation, and much more.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.