110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

This book introduces readers to experimental techniques of general utility that can be used to practically and reliably determine nucleation rates. It also covers the basics of gas hydrates, phase equilibria, nucleation theory, crystal growth, and interfacial gaseous states. Given its scope, the book will be of interest to graduate students and researchers in the field of hydrate nucleation. The formation of gas hydrates is a first-order phase transition that begins with nucleation. Understanding nucleation is of interest to many working in the chemical and petroleum industry, since…mehr

Produktbeschreibung
This book introduces readers to experimental techniques of general utility that can be used to practically and reliably determine nucleation rates. It also covers the basics of gas hydrates, phase equilibria, nucleation theory, crystal growth, and interfacial gaseous states. Given its scope, the book will be of interest to graduate students and researchers in the field of hydrate nucleation.
The formation of gas hydrates is a first-order phase transition that begins with nucleation. Understanding nucleation is of interest to many working in the chemical and petroleum industry, since nucleation, while beneficial in many chemical processes, is also a concern in terms of flow assurance for oil and natural gas pipelines. A primary difficulty in the investigation of gas hydrate nucleation has been researchers' inability to determine and compare the nucleation rates of gas hydrates across systems with different scales and levels of complexity, which in turn has limited their ability to study the nucleation process itself.

This book introduces readers to experimental techniques that can be used to practically and reliably determine the nucleation rates of gas hydrate systems. It also covers the basics of gas hydrates, phase equilibria, nucleation theory, crystal growth, and interfacial gaseous states. Given its scope, the book will be of interest to graduate students and researchers in the field of hydrate nucleation.

Autorenporträt
Dr. Nubuo Maeda is currently an Associate Professor at the Department of Civil & Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta. He received his bachelor's degree in Applied Physics from Tohoku University in 1992 and his master's degree in Materials Science from Japan Advanced Institute of Science and Technology in 1997. He completed his Ph.D. at Australian National University in 2001. He is a member of several professional societies, including the American Chemical Society and the Society of Petroleum Engineers. His research chiefly focuses on gas hydrates, surface physics, and nucleation and phase transitions.