Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Numerical Linear Algebra is a concise, insightful, and elegant introduction to the field of numerical linear algebra.
Andere Kunden interessierten sich auch für
- J.C. RosalesNumerical Semigroups75,99 €
- Biswa Nath DattaNumerical Linear Algebra and Applications90,99 €
- Folkmar BornemannNumerical Linear Algebra41,99 €
- James W DemmelApplied Numerical Linear Algebra97,99 €
- J.C. RosalesNumerical Semigroups67,99 €
- Structured Matrices in Numerical Linear Algebra82,99 €
- Holger WendlandNumerical Linear Algebra105,99 €
-
-
-
Numerical Linear Algebra is a concise, insightful, and elegant introduction to the field of numerical linear algebra.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- 1997.
- Seitenzahl: 184
- Erscheinungstermin: 1. Juni 1997
- Englisch
- Abmessung: 254mm x 179mm x 20mm
- Gewicht: 664g
- ISBN-13: 9780898713619
- ISBN-10: 0898713617
- Artikelnr.: 23143152
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- 1997.
- Seitenzahl: 184
- Erscheinungstermin: 1. Juni 1997
- Englisch
- Abmessung: 254mm x 179mm x 20mm
- Gewicht: 664g
- ISBN-13: 9780898713619
- ISBN-10: 0898713617
- Artikelnr.: 23143152
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Preface
Part I. Fundamental: 1. Matrix-vector multiplication
2. Orthogonal vectors and matrices
3. Norms
4. The singular value decomposition
5. More on the SVD
Part II. QR Factorization and Least Squares: 6. Projectors
7. QR factorization
8. Gram-Schmidt orthogonalization
9. MATLAB
10. Householder triangularization
11. Least squares problems
Part III. Conditioning and Stability: 12. Conditioning and condition numbers
13. Floating point arithmetic
14. Stability
15. More on stability
16. Stability of householder triangularization
17. Stability of back substitution
18. Conditioning of least squares problems
19. Stability of least squares algorithms
Part IV. Systems of Equations: 20. Gaussian elimination
21. Pivoting
22. Stability of Gaussian elimination
23. Cholesky factorization
Part V. Eigenvalues: 24. Eigenvalue problems
25. Overview of Eigenvalue algorithms
26. Reduction to Hessenberg or tridiagonal form
27. Rayleigh quotient, inverse iteration
28. QR algorithm without shifts
29. QR algorithm with shifts
30. Other Eigenvalue algorithms
31. Computing the SVD
Part VI. Iterative Methods: 32. Overview of iterative methods
33. The Arnoldi iteration
34. How Arnoldi locates Eigenvalues
35. GMRES
36. The Lanczos iteration
37. From Lanczos to Gauss quadrature
38. Conjugate gradients
39. Biorthogonalization methods
40. Preconditioning
Appendix
Notes
Bibliography
Index.
Part I. Fundamental: 1. Matrix-vector multiplication
2. Orthogonal vectors and matrices
3. Norms
4. The singular value decomposition
5. More on the SVD
Part II. QR Factorization and Least Squares: 6. Projectors
7. QR factorization
8. Gram-Schmidt orthogonalization
9. MATLAB
10. Householder triangularization
11. Least squares problems
Part III. Conditioning and Stability: 12. Conditioning and condition numbers
13. Floating point arithmetic
14. Stability
15. More on stability
16. Stability of householder triangularization
17. Stability of back substitution
18. Conditioning of least squares problems
19. Stability of least squares algorithms
Part IV. Systems of Equations: 20. Gaussian elimination
21. Pivoting
22. Stability of Gaussian elimination
23. Cholesky factorization
Part V. Eigenvalues: 24. Eigenvalue problems
25. Overview of Eigenvalue algorithms
26. Reduction to Hessenberg or tridiagonal form
27. Rayleigh quotient, inverse iteration
28. QR algorithm without shifts
29. QR algorithm with shifts
30. Other Eigenvalue algorithms
31. Computing the SVD
Part VI. Iterative Methods: 32. Overview of iterative methods
33. The Arnoldi iteration
34. How Arnoldi locates Eigenvalues
35. GMRES
36. The Lanczos iteration
37. From Lanczos to Gauss quadrature
38. Conjugate gradients
39. Biorthogonalization methods
40. Preconditioning
Appendix
Notes
Bibliography
Index.
Preface
Part I. Fundamental: 1. Matrix-vector multiplication
2. Orthogonal vectors and matrices
3. Norms
4. The singular value decomposition
5. More on the SVD
Part II. QR Factorization and Least Squares: 6. Projectors
7. QR factorization
8. Gram-Schmidt orthogonalization
9. MATLAB
10. Householder triangularization
11. Least squares problems
Part III. Conditioning and Stability: 12. Conditioning and condition numbers
13. Floating point arithmetic
14. Stability
15. More on stability
16. Stability of householder triangularization
17. Stability of back substitution
18. Conditioning of least squares problems
19. Stability of least squares algorithms
Part IV. Systems of Equations: 20. Gaussian elimination
21. Pivoting
22. Stability of Gaussian elimination
23. Cholesky factorization
Part V. Eigenvalues: 24. Eigenvalue problems
25. Overview of Eigenvalue algorithms
26. Reduction to Hessenberg or tridiagonal form
27. Rayleigh quotient, inverse iteration
28. QR algorithm without shifts
29. QR algorithm with shifts
30. Other Eigenvalue algorithms
31. Computing the SVD
Part VI. Iterative Methods: 32. Overview of iterative methods
33. The Arnoldi iteration
34. How Arnoldi locates Eigenvalues
35. GMRES
36. The Lanczos iteration
37. From Lanczos to Gauss quadrature
38. Conjugate gradients
39. Biorthogonalization methods
40. Preconditioning
Appendix
Notes
Bibliography
Index.
Part I. Fundamental: 1. Matrix-vector multiplication
2. Orthogonal vectors and matrices
3. Norms
4. The singular value decomposition
5. More on the SVD
Part II. QR Factorization and Least Squares: 6. Projectors
7. QR factorization
8. Gram-Schmidt orthogonalization
9. MATLAB
10. Householder triangularization
11. Least squares problems
Part III. Conditioning and Stability: 12. Conditioning and condition numbers
13. Floating point arithmetic
14. Stability
15. More on stability
16. Stability of householder triangularization
17. Stability of back substitution
18. Conditioning of least squares problems
19. Stability of least squares algorithms
Part IV. Systems of Equations: 20. Gaussian elimination
21. Pivoting
22. Stability of Gaussian elimination
23. Cholesky factorization
Part V. Eigenvalues: 24. Eigenvalue problems
25. Overview of Eigenvalue algorithms
26. Reduction to Hessenberg or tridiagonal form
27. Rayleigh quotient, inverse iteration
28. QR algorithm without shifts
29. QR algorithm with shifts
30. Other Eigenvalue algorithms
31. Computing the SVD
Part VI. Iterative Methods: 32. Overview of iterative methods
33. The Arnoldi iteration
34. How Arnoldi locates Eigenvalues
35. GMRES
36. The Lanczos iteration
37. From Lanczos to Gauss quadrature
38. Conjugate gradients
39. Biorthogonalization methods
40. Preconditioning
Appendix
Notes
Bibliography
Index.