21,90 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Dieser einführende Text basiert auf Vorlesungen innerhalb eines mehrsemestrigen Zyklus "Numerische Mathematik", den der Autor über einen Zeitraum von 25 Jahren an der Universität Heidelberg gehalten hat. Der vorliegende vierte Teil ist Problemen der Kontinuumsmechanik, speziell der Struktur- und der Strömungsmechanik, und deren numerischer Lösung mit Finite-Elemente-Verfahren gewidmet. Dabei finden wieder sowohl theoretisch mathematische als auch praktische Aspekte Berücksichtigung. Als Grundlage einer sachgerechten numerischen Approximation werden die mathematischen Modelle systematisch aus…mehr

Produktbeschreibung
Dieser einführende Text basiert auf Vorlesungen innerhalb eines mehrsemestrigen Zyklus "Numerische Mathematik", den der Autor über einen Zeitraum von 25 Jahren an der Universität Heidelberg gehalten hat. Der vorliegende vierte Teil ist Problemen der Kontinuumsmechanik, speziell der Struktur- und der Strömungsmechanik, und deren numerischer Lösung mit Finite-Elemente-Verfahren gewidmet. Dabei finden wieder sowohl theoretisch mathematische als auch praktische Aspekte Berücksichtigung. Als Grundlage einer sachgerechten numerischen Approximation werden die mathematischen Modelle systematisch aus physikalischen Grundpostulaten hergeleitet. Das Verständnis der Inhalte erfordert neben dem Stoff der vorausgehenden Bände "Numerik 0 (Einführung in die Numerische Mathematik)", "Numerik 1 (Numerik gewöhnlicher Differentialgleichungen)" und "Numerik 2 (Numerik partieller Differentialgleichungen)" nur solche Vorkenntnisse, wie sie üblicherweise in den Grundvorlesungen über Analysis und Lineare Algebra vermittelt werden.
Autorenporträt
Rannacher, RolfProfessor i. R. für Numerische Mathematik an der Universität Heidelberg; Studium der Mathematik an der Universität Frankfurt a. Main - Promotion 1974; Habilitation 1978 in Bonn; 1979/1980 Vis. Assoc. Prof. an der University of Michigan (Ann Arbor, USA), dann Professor in Erlangen und Saarbrücken - in Heidelberg seit 1988; Spezialgebiet "Numerik partieller Differentialgleichungen", insbesondere "Methode der finiten Elemente" mit Anwendungen in Natur- und Ingenieurwissenschaften; hierzu über 160 publizierte wissenschaftliche Arbeiten.