Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf existierende Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.
Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf existierende Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Notation.- 1 Grundbegriffe.- 1.1 Klassifikation und Korrektheit.- 1.2 Fouriersche Methode, Integraltransformationen.- 1.3 Maximumprinzip, Fundamentallösung.- 2 Differenzenverfahren.- 2.1 Grundkonzepte.- 2.2 Einführende Beispiele.- 2.3 Transport probleme und Erhaltungsgleichungen.- 2.4 Elliptische Randwertaufgaben.- 2.5 Differenzenverfahren und Finite-Volumen-Verfahren.- 2.6 Parabolische Anfangs-Randwert-Probleme.- 2.7 Hyperbolische Probleme 2. Ordnung.- 3 Schwache Lösungen.- 3.1 Einführung.- 3.2 Angepaßte Funktionenräume.- 3.3 Variationsgleichungen und konforme Approximation.- 3.4 Abschwächungen der V-Elliptizität.- 3.5 Nichtlineare Probleme.- 4 Methode der finiten Elemente.- 4.1 Ein Beispiel.- 4.2 Finite-Elemente-Räume.- 4.3 Zur Realisierung der Finite-Elemente-Methode.- 4.4 Konvergenz konformer Methoden.- 4.5 Nichtkonforme Finite-Elemente-Methoden.- 4.6 Gemischte finite Elemente.- 4.7 Fehlerschätzer und adaptive FEM.- 4.8 Die diskontinuierliche Galerkin-Methode.- 4.9 Hinweise zu weiteren Aspekten.- 5 Finite Elemente für instationäre Probleme.- 5.1 Parabolische Aufgaben.- 5.2 Hyperbolische Aufgaben zweiter Ordnung.- 6 Singulär gestörte Randwertaufgaben.- 6.1 Zweipunkt-Randwertaufgaben.- 6.2 Räumlich eindimensionale parabolische Probleme.- 6.3 Mehrdimensionale Konvektions-Diffusions-Probleme.- 7 Variationsungleichungen, optimale Steuerung.- 7.1 Aufgabenstellung.- 7.2 Diskretisierung von Variationsungleichungen.- 7.3 Penalty-Methoden.- 7.4 Optimale Steuerung partieller DGLN.- 8 Verfahren für diskretisierte Probleme.- 8.1 Besonderheiten der Aufgabenstellung.- 8.2 Direkte Verfahren.- 8.3 Iterationsverfahren.- 8.4 CG - Verfahren.- 8.5 Mehrgitterverfahren.- 8.6 Gebietszerlegung, parallele Algorithmen.- Bücher u. ä.- Zeitschriftenartikel.
Rezensionen
"Because of its emphasis on the practical details of the numerical methods, as well as the ample illustrations by simple examples, the book is an excellent introduction to the field." -- Zentralblatt MATH, 1086, 12/2006
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826