Olaf Steinbach
Numerische Näherungsverfahren für elliptische Randwertprobleme
Finite Elemente und Randelemente
Olaf Steinbach
Numerische Näherungsverfahren für elliptische Randwertprobleme
Finite Elemente und Randelemente
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
In diesem Lehrbuch wird für die näherungsweise Lösung von elliptischen Randwertproblemen zweiter Ordnung eine einheitliche Theorie der Finiten Element Methode und der Randelementmethode präsentiert. Neben der Lösbarkeits-, Stabilitäts- und Fehleranalysis wird auch auf effiziente Verfahren zur Lösung der resultierenden linearen Gleichungssysteme eingegangen. Anwendungen sind die Potentialgleichung, das System der linearen Elastostatik und das Stokes-System.
Andere Kunden interessierten sich auch für
- Jürgen BeyFinite-Volumen- und Mehrgitter-Verfahren für elliptische Randwertprobleme49,99 €
- Wieland RichterNumerische Lösung partieller Differentialgleichungen mit der Finite-Elemente-Methode54,99 €
- Roald M. TrigubFourier Analysis and Approximation of Functions125,99 €
- Jorge BustamanteAlgebraic Approximation: A Guide to Past and Current Solutions37,99 €
- Detlef H. Mache / József Szabados / Marcel G. de Bruin (eds.)Trends and Applications in Constructive Approximation83,99 €
- New Trends in Approximation Theory70,99 €
- Frank R. DeutschBest Approximation in Inner Product Spaces41,99 €
-
-
-
In diesem Lehrbuch wird für die näherungsweise Lösung von elliptischen Randwertproblemen zweiter Ordnung eine einheitliche Theorie der Finiten Element Methode und der Randelementmethode präsentiert. Neben der Lösbarkeits-, Stabilitäts- und Fehleranalysis wird auch auf effiziente Verfahren zur Lösung der resultierenden
linearen Gleichungssysteme eingegangen. Anwendungen sind die Potentialgleichung, das System der linearen Elastostatik und das Stokes-System.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
linearen Gleichungssysteme eingegangen. Anwendungen sind die Potentialgleichung, das System der linearen Elastostatik und das Stokes-System.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Advances in Numerical Mathematics
- Verlag: Vieweg+Teubner / Vieweg+Teubner Verlag
- Artikelnr. des Verlages: 978-3-519-00436-3
- 2003
- Seitenzahl: 364
- Erscheinungstermin: 26. November 2003
- Deutsch
- Abmessung: 240mm x 170mm x 20mm
- Gewicht: 626g
- ISBN-13: 9783519004363
- ISBN-10: 3519004364
- Artikelnr.: 12106833
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Advances in Numerical Mathematics
- Verlag: Vieweg+Teubner / Vieweg+Teubner Verlag
- Artikelnr. des Verlages: 978-3-519-00436-3
- 2003
- Seitenzahl: 364
- Erscheinungstermin: 26. November 2003
- Deutsch
- Abmessung: 240mm x 170mm x 20mm
- Gewicht: 626g
- ISBN-13: 9783519004363
- ISBN-10: 3519004364
- Artikelnr.: 12106833
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Priv.-Doz. Dr. Olaf Steinbach, Universität Stuttgart
1 Randwertprobleme.- 1.1 Potentialgleichung.- 1.2 Lineare Elastostatik.- 1.3 Stokes-System.- 2 Funktionenräume.- 2.1 Die Räume Ck (?), Ck,?(?) und Lp(?).- 2.2 Verallgemeinerte Ableitungen und Sobolev-Räume.- 2.3 Eigenschaften von Sobolev-Räumen.- 2.4 Distributionen und Sobolev-Räume.- 2.5 Sobolev-Räume auf Mannigfaltigkeiten.- 3 Variationsmethoden.- 3.1 Operatorgleichungen.- 3.2 Elliptische Operatoren.- 3.3 Operatoren und Stabilitätsbedingungen.- 3.4 Gleichungen mit Nebenbedingungen.- 3.5 Sattelpunktprobleme.- 4 Variationsformulierungen von Randwertproblemen.- 4.1 Potentialgleichung.- 4.2 Lineare Elastostatik.- 4.3 Stokes-Problem.- 5 Fundamentallösungen partieller Differentialoperatoren.- 5.1 Laplace-Operator.- 5.2 Lineare Elastostatik.- 5.3 Stokes-Problem.- 6 Randintegraloperatoren.- 6.1 Newton-Potential.- 6.2 Einfachschichtpotential.- 6.3 Adjungiertes Doppelschichtpotential.- 6.4 Doppelschichtpotential.- 6.5 Hypersingulärer Integraloperator.- 6.6 Eigenschaften der Randintegraloperatoren.- 6.7 Lineare Elastostatik.- 6.8 Stokes-System.- 7 Randintegralgleichungen.- 7.1 Dirichlet-Randwertproblem.- 7.2 Neumann-Randwertproblem.- 7.3 Gemischte Randbedingungen.- 7.4 Robin-Randbedingungen.- 7.5 Randwertprobleme im Außenraum.- 8 Näherungsmethoden für Variationsprobleme.- 8.1 Galerkin-Bubnov-Verfahren.- 8.2 Approximation der Linearform.- 8.3 Approximation des Operators.- 8.4 Galerkin-Petrov-Verfahren.- 8.5 Sattelpunktprobleme.- 9 Finite Elemente.- 9.1 Referenzelemente.- 9.2 Formfunktionen.- 9.3 Ansatzräume.- 9.4 Quasi-Interpolationsoperatoren.- 10 Randelemente.- 10.1 Referenzelemente.- 10.2 Ansatzräume.- 11 Finite Element Methoden.- 11.1 Dirichlet-Randwertproblem.- 11.2 Neumann-Randwertproblem.- 11.3 FEM mitLagrange-Multiplikatoren.- 12 Randelementmethoden.- 12.1 Dirichlet-Randwertproblem.- 12.2 Neumann-Randwertproblem.- 12.3 Gemischte Randbedingungen.- 12.4 Robin-Randbedingungen.- 13 Vorkonditionierte Iterationsverfahren.- 13.1 Das Verfahren konjugierter Gradienten.- 13.2 Eine allgemeine Vorkonditionierungsstrategie.- 13.3 Lösungsverfahren für Sattelpunktprobleme.- 14 Schnelle Randelementmethoden.- 14.1 Hierarchische Cluster-Methoden.- 14.2 Approximation der Steifigkeitsmatrix.- 14.3 Wavelets.- 15 Gebietszerlegungsmethoden.- Literatur.
1 Randwertprobleme.- 1.1 Potentialgleichung.- 1.2 Lineare Elastostatik.- 1.3 Stokes-System.- 2 Funktionenräume.- 2.1 Die Räume Ck (?), Ck,?(?) und Lp(?).- 2.2 Verallgemeinerte Ableitungen und Sobolev-Räume.- 2.3 Eigenschaften von Sobolev-Räumen.- 2.4 Distributionen und Sobolev-Räume.- 2.5 Sobolev-Räume auf Mannigfaltigkeiten.- 3 Variationsmethoden.- 3.1 Operatorgleichungen.- 3.2 Elliptische Operatoren.- 3.3 Operatoren und Stabilitätsbedingungen.- 3.4 Gleichungen mit Nebenbedingungen.- 3.5 Sattelpunktprobleme.- 4 Variationsformulierungen von Randwertproblemen.- 4.1 Potentialgleichung.- 4.2 Lineare Elastostatik.- 4.3 Stokes-Problem.- 5 Fundamentallösungen partieller Differentialoperatoren.- 5.1 Laplace-Operator.- 5.2 Lineare Elastostatik.- 5.3 Stokes-Problem.- 6 Randintegraloperatoren.- 6.1 Newton-Potential.- 6.2 Einfachschichtpotential.- 6.3 Adjungiertes Doppelschichtpotential.- 6.4 Doppelschichtpotential.- 6.5 Hypersingulärer Integraloperator.- 6.6 Eigenschaften der Randintegraloperatoren.- 6.7 Lineare Elastostatik.- 6.8 Stokes-System.- 7 Randintegralgleichungen.- 7.1 Dirichlet-Randwertproblem.- 7.2 Neumann-Randwertproblem.- 7.3 Gemischte Randbedingungen.- 7.4 Robin-Randbedingungen.- 7.5 Randwertprobleme im Außenraum.- 8 Näherungsmethoden für Variationsprobleme.- 8.1 Galerkin-Bubnov-Verfahren.- 8.2 Approximation der Linearform.- 8.3 Approximation des Operators.- 8.4 Galerkin-Petrov-Verfahren.- 8.5 Sattelpunktprobleme.- 9 Finite Elemente.- 9.1 Referenzelemente.- 9.2 Formfunktionen.- 9.3 Ansatzräume.- 9.4 Quasi-Interpolationsoperatoren.- 10 Randelemente.- 10.1 Referenzelemente.- 10.2 Ansatzräume.- 11 Finite Element Methoden.- 11.1 Dirichlet-Randwertproblem.- 11.2 Neumann-Randwertproblem.- 11.3 FEM mitLagrange-Multiplikatoren.- 12 Randelementmethoden.- 12.1 Dirichlet-Randwertproblem.- 12.2 Neumann-Randwertproblem.- 12.3 Gemischte Randbedingungen.- 12.4 Robin-Randbedingungen.- 13 Vorkonditionierte Iterationsverfahren.- 13.1 Das Verfahren konjugierter Gradienten.- 13.2 Eine allgemeine Vorkonditionierungsstrategie.- 13.3 Lösungsverfahren für Sattelpunktprobleme.- 14 Schnelle Randelementmethoden.- 14.1 Hierarchische Cluster-Methoden.- 14.2 Approximation der Steifigkeitsmatrix.- 14.3 Wavelets.- 15 Gebietszerlegungsmethoden.- Literatur.