In der konvexen, nichtglatten Optimierung betrachtet man das Problem,
ein Minimum einer konvexen Funktion zu berechnen, die
nicht überall differenzierbar ist. Solche Aufgabenstellungen treten
bei der Auswertung von Messdaten und in vielen Anwendungen
der Wirtschaftswissenschaften und der Technik auf. Dieses Lehrbuch
behandelt numerische Verfahren zur Lösung nichtglatter, konvexer
Optimierungsprobleme, die sich im praktischen Einsatz bewährt
haben. Die Verfahren werden so dargestellt, dass der Leser in der
Lage ist, einfache Versionen selbst zu implementieren. Zahlreiche
numerische Beispiele demonstrieren die Anwendung der Verfahren.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
ein Minimum einer konvexen Funktion zu berechnen, die
nicht überall differenzierbar ist. Solche Aufgabenstellungen treten
bei der Auswertung von Messdaten und in vielen Anwendungen
der Wirtschaftswissenschaften und der Technik auf. Dieses Lehrbuch
behandelt numerische Verfahren zur Lösung nichtglatter, konvexer
Optimierungsprobleme, die sich im praktischen Einsatz bewährt
haben. Die Verfahren werden so dargestellt, dass der Leser in der
Lage ist, einfache Versionen selbst zu implementieren. Zahlreiche
numerische Beispiele demonstrieren die Anwendung der Verfahren.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.