Object Categorization
Computer and Human Vision Perspectives
Herausgeber: Dickinson, Sven J; Tarr, Michael J; Schiele, Bernt; Leonardis, Ales
Object Categorization
Computer and Human Vision Perspectives
Herausgeber: Dickinson, Sven J; Tarr, Michael J; Schiele, Bernt; Leonardis, Ales
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A unique multidisciplinary perspective on the problem of visual object categorization.
Andere Kunden interessierten sich auch für
- Segmentation Based Object Categorization19,99 €
- Object Categorization from Image Search19,99 €
- Sung-ho KimObject Identification and Categorization with Visual Context51,99 €
- Ozgur YilmazelNLP-Driven Document Representations for Text Categorization32,99 €
- Richard J. RadkeComputer Vision for Visual Effects70,99 €
- Plasticity in Sensory Systems146,99 €
- Sharon McDonald / John Tait (Eds.)Advances in Information Retrieval42,99 €
-
-
-
A unique multidisciplinary perspective on the problem of visual object categorization.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 552
- Erscheinungstermin: 7. September 2009
- Englisch
- Abmessung: 262mm x 187mm x 37mm
- Gewicht: 1405g
- ISBN-13: 9780521887380
- ISBN-10: 0521887380
- Artikelnr.: 26573114
- Verlag: Cambridge University Press
- Seitenzahl: 552
- Erscheinungstermin: 7. September 2009
- Englisch
- Abmessung: 262mm x 187mm x 37mm
- Gewicht: 1405g
- ISBN-13: 9780521887380
- ISBN-10: 0521887380
- Artikelnr.: 26573114
1. The evolution of object categorization and the challenge of image
abstraction Sven Dickinson; 2. Can we understand how the brain solves
object recognition James J. DiCarlo; 3. Visual recognition: where do we
come from? What are we doing? Where should we go? Pietro Perona; 4. On what
it means to see, and what we can do about it Shimon Edelman; 5. Generic
object recognition: the case for high level 3-D features Gerard Medioni; 6.
Functional organization and development of the human ventral stream Kalanit
Grill-Spector; 7. Reasoning about functionality: object recognition and
related developments Kevin Bowyer, Melanie Sutton and Louise Stark; 8. The
user-interface theory of perception: perception and categorization in the
context of evolution Donald Hoffman; 9. Digital images in large collections
or on the web often appear near text D. A. Forsyth, Tamara Berg, Cecilia
Ovesdotter Alm, Ali Farhadi, Julia Hockenmaier, Nicolas Loeff and Gang
Wang; 10. Structural representation of object shape in the brain Charles
Connor; 11. Learning hierarchical compositional representations of object
structure Sanja Fidler, Marko Boben and Ales Leonardis; 12. Object
categorization in man, monkey, and machine: some answers and some open
questions Maximilian Riesenhuber; 13. Learning object category modeling,
learning, and recognition by stochastic grammar Jake Porway, Benjamin Yao
and Song Chun Zhu; 14. The neurophysiology and computational mechanisms of
object representation Edmund Rolls; 15. Recognizing visual classes and
individual objects by semantic hierarchies Shimon Ullman; 16. Early stages
of object categorization Pawan Sinha, Benjamin Balas, Yuri Ostrovsky and
Jonas Wulff; 17. Towards integration of different paradigms in modeling,
representation and learning of visual categories Mario Fritz and Bernt
Schiele; 18. Acquisition and breakdown of category-specificity in the
ventral visual stream K. Suzanne Scherf, Marlene Behrmann and Kate
Humphreys; 19. Using simple features and relations Marius Leordeanu,
Martial Hebert and Rahul Sukthankar; 20. The proactive brain: using memory
to anticipate what's next Kestutis Kveraga, Jasmine Boshyan and Moshe Bar;
21. Spatial pyramid matching Svetlana Lazebnik, Cordelia Schmid and Jean
Ponce; 22. Perceptual decisions and visual learning in the human brain Zoe
Kourtzi; 23. Shapes and shock graphs: from segmented shapes to shapes
embedded in images Benjamin Kimia; 24. Correlated structures in natural
scenes and their implications on neural learning of prior models for
objects and surfaces Tai Sing Lee, Tom Stepleton, Brian Potetz and Jason
Samonds; 25. Medial models for recognition Kaleem Siddiqi and Stephen
Pizer; 26. Multimodal categorization C. Wallraven and Heinrich Bulthoff;
27. Comparing images of 3-D objects David W. Jacobs.
abstraction Sven Dickinson; 2. Can we understand how the brain solves
object recognition James J. DiCarlo; 3. Visual recognition: where do we
come from? What are we doing? Where should we go? Pietro Perona; 4. On what
it means to see, and what we can do about it Shimon Edelman; 5. Generic
object recognition: the case for high level 3-D features Gerard Medioni; 6.
Functional organization and development of the human ventral stream Kalanit
Grill-Spector; 7. Reasoning about functionality: object recognition and
related developments Kevin Bowyer, Melanie Sutton and Louise Stark; 8. The
user-interface theory of perception: perception and categorization in the
context of evolution Donald Hoffman; 9. Digital images in large collections
or on the web often appear near text D. A. Forsyth, Tamara Berg, Cecilia
Ovesdotter Alm, Ali Farhadi, Julia Hockenmaier, Nicolas Loeff and Gang
Wang; 10. Structural representation of object shape in the brain Charles
Connor; 11. Learning hierarchical compositional representations of object
structure Sanja Fidler, Marko Boben and Ales Leonardis; 12. Object
categorization in man, monkey, and machine: some answers and some open
questions Maximilian Riesenhuber; 13. Learning object category modeling,
learning, and recognition by stochastic grammar Jake Porway, Benjamin Yao
and Song Chun Zhu; 14. The neurophysiology and computational mechanisms of
object representation Edmund Rolls; 15. Recognizing visual classes and
individual objects by semantic hierarchies Shimon Ullman; 16. Early stages
of object categorization Pawan Sinha, Benjamin Balas, Yuri Ostrovsky and
Jonas Wulff; 17. Towards integration of different paradigms in modeling,
representation and learning of visual categories Mario Fritz and Bernt
Schiele; 18. Acquisition and breakdown of category-specificity in the
ventral visual stream K. Suzanne Scherf, Marlene Behrmann and Kate
Humphreys; 19. Using simple features and relations Marius Leordeanu,
Martial Hebert and Rahul Sukthankar; 20. The proactive brain: using memory
to anticipate what's next Kestutis Kveraga, Jasmine Boshyan and Moshe Bar;
21. Spatial pyramid matching Svetlana Lazebnik, Cordelia Schmid and Jean
Ponce; 22. Perceptual decisions and visual learning in the human brain Zoe
Kourtzi; 23. Shapes and shock graphs: from segmented shapes to shapes
embedded in images Benjamin Kimia; 24. Correlated structures in natural
scenes and their implications on neural learning of prior models for
objects and surfaces Tai Sing Lee, Tom Stepleton, Brian Potetz and Jason
Samonds; 25. Medial models for recognition Kaleem Siddiqi and Stephen
Pizer; 26. Multimodal categorization C. Wallraven and Heinrich Bulthoff;
27. Comparing images of 3-D objects David W. Jacobs.
1. The evolution of object categorization and the challenge of image
abstraction Sven Dickinson; 2. Can we understand how the brain solves
object recognition James J. DiCarlo; 3. Visual recognition: where do we
come from? What are we doing? Where should we go? Pietro Perona; 4. On what
it means to see, and what we can do about it Shimon Edelman; 5. Generic
object recognition: the case for high level 3-D features Gerard Medioni; 6.
Functional organization and development of the human ventral stream Kalanit
Grill-Spector; 7. Reasoning about functionality: object recognition and
related developments Kevin Bowyer, Melanie Sutton and Louise Stark; 8. The
user-interface theory of perception: perception and categorization in the
context of evolution Donald Hoffman; 9. Digital images in large collections
or on the web often appear near text D. A. Forsyth, Tamara Berg, Cecilia
Ovesdotter Alm, Ali Farhadi, Julia Hockenmaier, Nicolas Loeff and Gang
Wang; 10. Structural representation of object shape in the brain Charles
Connor; 11. Learning hierarchical compositional representations of object
structure Sanja Fidler, Marko Boben and Ales Leonardis; 12. Object
categorization in man, monkey, and machine: some answers and some open
questions Maximilian Riesenhuber; 13. Learning object category modeling,
learning, and recognition by stochastic grammar Jake Porway, Benjamin Yao
and Song Chun Zhu; 14. The neurophysiology and computational mechanisms of
object representation Edmund Rolls; 15. Recognizing visual classes and
individual objects by semantic hierarchies Shimon Ullman; 16. Early stages
of object categorization Pawan Sinha, Benjamin Balas, Yuri Ostrovsky and
Jonas Wulff; 17. Towards integration of different paradigms in modeling,
representation and learning of visual categories Mario Fritz and Bernt
Schiele; 18. Acquisition and breakdown of category-specificity in the
ventral visual stream K. Suzanne Scherf, Marlene Behrmann and Kate
Humphreys; 19. Using simple features and relations Marius Leordeanu,
Martial Hebert and Rahul Sukthankar; 20. The proactive brain: using memory
to anticipate what's next Kestutis Kveraga, Jasmine Boshyan and Moshe Bar;
21. Spatial pyramid matching Svetlana Lazebnik, Cordelia Schmid and Jean
Ponce; 22. Perceptual decisions and visual learning in the human brain Zoe
Kourtzi; 23. Shapes and shock graphs: from segmented shapes to shapes
embedded in images Benjamin Kimia; 24. Correlated structures in natural
scenes and their implications on neural learning of prior models for
objects and surfaces Tai Sing Lee, Tom Stepleton, Brian Potetz and Jason
Samonds; 25. Medial models for recognition Kaleem Siddiqi and Stephen
Pizer; 26. Multimodal categorization C. Wallraven and Heinrich Bulthoff;
27. Comparing images of 3-D objects David W. Jacobs.
abstraction Sven Dickinson; 2. Can we understand how the brain solves
object recognition James J. DiCarlo; 3. Visual recognition: where do we
come from? What are we doing? Where should we go? Pietro Perona; 4. On what
it means to see, and what we can do about it Shimon Edelman; 5. Generic
object recognition: the case for high level 3-D features Gerard Medioni; 6.
Functional organization and development of the human ventral stream Kalanit
Grill-Spector; 7. Reasoning about functionality: object recognition and
related developments Kevin Bowyer, Melanie Sutton and Louise Stark; 8. The
user-interface theory of perception: perception and categorization in the
context of evolution Donald Hoffman; 9. Digital images in large collections
or on the web often appear near text D. A. Forsyth, Tamara Berg, Cecilia
Ovesdotter Alm, Ali Farhadi, Julia Hockenmaier, Nicolas Loeff and Gang
Wang; 10. Structural representation of object shape in the brain Charles
Connor; 11. Learning hierarchical compositional representations of object
structure Sanja Fidler, Marko Boben and Ales Leonardis; 12. Object
categorization in man, monkey, and machine: some answers and some open
questions Maximilian Riesenhuber; 13. Learning object category modeling,
learning, and recognition by stochastic grammar Jake Porway, Benjamin Yao
and Song Chun Zhu; 14. The neurophysiology and computational mechanisms of
object representation Edmund Rolls; 15. Recognizing visual classes and
individual objects by semantic hierarchies Shimon Ullman; 16. Early stages
of object categorization Pawan Sinha, Benjamin Balas, Yuri Ostrovsky and
Jonas Wulff; 17. Towards integration of different paradigms in modeling,
representation and learning of visual categories Mario Fritz and Bernt
Schiele; 18. Acquisition and breakdown of category-specificity in the
ventral visual stream K. Suzanne Scherf, Marlene Behrmann and Kate
Humphreys; 19. Using simple features and relations Marius Leordeanu,
Martial Hebert and Rahul Sukthankar; 20. The proactive brain: using memory
to anticipate what's next Kestutis Kveraga, Jasmine Boshyan and Moshe Bar;
21. Spatial pyramid matching Svetlana Lazebnik, Cordelia Schmid and Jean
Ponce; 22. Perceptual decisions and visual learning in the human brain Zoe
Kourtzi; 23. Shapes and shock graphs: from segmented shapes to shapes
embedded in images Benjamin Kimia; 24. Correlated structures in natural
scenes and their implications on neural learning of prior models for
objects and surfaces Tai Sing Lee, Tom Stepleton, Brian Potetz and Jason
Samonds; 25. Medial models for recognition Kaleem Siddiqi and Stephen
Pizer; 26. Multimodal categorization C. Wallraven and Heinrich Bulthoff;
27. Comparing images of 3-D objects David W. Jacobs.