128,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
64 °P sammeln
  • Broschiertes Buch

Ohmic heating provides rapid and uniform heating, resulting in less thermal damage than conventional heating and allowing manufacturers to obtain high-quality products with minimum sensorial, nutritional, and structural changes. Ohmic Heating in Food Processing covers several aspects of Ohmic heating: science and engineering, chemistry and physics, biochemistry and nutrition, quality and safety, and development and technology, both basic and applied. It describes the importance of Ohmic technology and how to implement it in practice, addressing basic theory, principles, and applications.…mehr

Produktbeschreibung
Ohmic heating provides rapid and uniform heating, resulting in less thermal damage than conventional heating and allowing manufacturers to obtain high-quality products with minimum sensorial, nutritional, and structural changes. Ohmic Heating in Food Processing covers several aspects of Ohmic heating: science and engineering, chemistry and physics, biochemistry and nutrition, quality and safety, and development and technology, both basic and applied. It describes the importance of Ohmic technology and how to implement it in practice, addressing basic theory, principles, and applications. Divided into nine sections, this volume covers the basics of Ohmic heating, including a historic overview and fundamental principles; electrical conductivity, its importance, factors that influence it, and data modeling; biological effects of electricity on foods and food components, including microorganisms, enzymes, proteins, carbohydrates, and fats; and Ohmic heating behavior and design parameters. The book also deals with issues in Ohmic heating equipment, Ohmic heating modeling issues, and process validation issues. The authors discuss various applications of Ohmic heating applied to different classes of foods, such as muscle foods (meat, poultry, and fish), dairy products, fruits, and vegetables. They also examine commercially successful applications of food products processed by Ohmic heating and considers applications of Ohmic heating where preservation is not the main focus, for example, blanching, Ohmic thawing, and the potential for Ohmic heating for long-duration space missions.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Hosahalli S. Ramaswamy is a professor of food processing at McGill University, Ste-Anne-de-Bellevue, Quebec, Canada. He has established a very strong research program in several areas of postharvest technology and food processing. Dr. Ramaswamy is active in food process engineering research and has published more than 300 papers in refereed scientific journals, presented over 400 papers at conferences, and has been an invited keynote speaker at several international conferences. Dr. Ramaswamy has been conferred several prestigious awards including WJ Eva and President's Awards (CIFST), John Clark Award (CSBE), Merit Pin (IFTPS), and Fellowships of CIFST and CSBE. Dr. Michèle Marcotte is currently the director of Research and Development at the Eastern Cereal and Oilseed Research Centre (ECORC) located at Agriculture and Agri-Food Canada in Ottawa. She authored and coauthored more than 60 peer-reviewed papers, 120 conference papers, and 45 research reports. Dr. Marcotte developed a unique two-step drying process for cranberries that was implemented commercially in Quebec. She has received nine significant awards/prizes. Dr. Sudhir K. Sastry is a professor in the Department of Food, Agricultural, and Biological Engineering at The Ohio State University. His research interests include Ohmic heating, aseptic, high pressure and pulsed electric field (PEF) processing, the influence of moderate electric fields on biological materials, and the safety of fresh produce. He has published over 170 papers, six patents, and a book titled Aseptic Processing of Particulate Foods. He also recently completed a project for NASA, where he and his colleagues developed new, reusable food packaging for NASA's lunar and Mars missions. Khalid Abdelrahim, Ph.D., is currently the thermal processing manager and process authority for Nestle USA and Nestle Canada, Glendale, California. He is responsible for the thermal process support of the Coffee Mate, NesQuik, Carnation Evaporated Milk, Libbey's Pumpkin, and so on. He was with Campbell Soup Company during the period 2002-2011, where he was recognized with the Campbell's CEO Award, and he developed and filed the first Ohmic heating process for Campbell Soup with the Food and Drug Administration.