Takatoshi Tsujimura
Oled Display Fundamentals and Applications
Takatoshi Tsujimura
Oled Display Fundamentals and Applications
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Diese neue Auflage beschäftigt sich vor allem mit den jüngsten wegweisenden Entwicklungen im Hinblick auf Design und Herstellung von OLED-Displays. - Vermittelt Grundlagen der OLED- und verwandter Technologien für Anwendungen wie Displays und Solid-State-Lighting sowie Hintergrundwissen zu Verarbeitung- und Fertigungstechniken. - Referenzwerk für Experten im Bereich OLED-Forschung, Fertigung, Anwendungen und Marketing. - Behandelt Weiß-/Farbfiltertechnik, die bei großformatigen Fernsehgeräten Standard ist.
Andere Kunden interessierten sich auch für
- Mitsuhiro KodenOled Displays and Lighting109,99 €
- Achintya K. BhowmikInteractive Displays167,99 €
- Mobile Displays240,99 €
- LCD Backlights149,99 €
- Matthew S. BrennesholtzProjection Displays212,99 €
- Phil Green / Lindsay W. MacDonald (Hgg.)Colour Engineering247,99 €
- Chris K. AtterwillPhotoalignment of Liquid Crystalline Materials155,99 €
-
-
-
Diese neue Auflage beschäftigt sich vor allem mit den jüngsten wegweisenden Entwicklungen im Hinblick auf Design und Herstellung von OLED-Displays.
- Vermittelt Grundlagen der OLED- und verwandter Technologien für Anwendungen wie Displays und Solid-State-Lighting sowie Hintergrundwissen zu Verarbeitung- und Fertigungstechniken.
- Referenzwerk für Experten im Bereich OLED-Forschung, Fertigung, Anwendungen und Marketing.
- Behandelt Weiß-/Farbfiltertechnik, die bei großformatigen Fernsehgeräten Standard ist.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Vermittelt Grundlagen der OLED- und verwandter Technologien für Anwendungen wie Displays und Solid-State-Lighting sowie Hintergrundwissen zu Verarbeitung- und Fertigungstechniken.
- Referenzwerk für Experten im Bereich OLED-Forschung, Fertigung, Anwendungen und Marketing.
- Behandelt Weiß-/Farbfiltertechnik, die bei großformatigen Fernsehgeräten Standard ist.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Wiley Series in Display Technology
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119187310
- 2. Aufl.
- Seitenzahl: 320
- Erscheinungstermin: 3. April 2017
- Englisch
- Abmessung: 240mm x 161mm x 21mm
- Gewicht: 630g
- ISBN-13: 9781119187318
- ISBN-10: 1119187311
- Artikelnr.: 44430580
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Wiley Series in Display Technology
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119187310
- 2. Aufl.
- Seitenzahl: 320
- Erscheinungstermin: 3. April 2017
- Englisch
- Abmessung: 240mm x 161mm x 21mm
- Gewicht: 630g
- ISBN-13: 9781119187318
- ISBN-10: 1119187311
- Artikelnr.: 44430580
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Takatoshi Tsujimura is General Manager of the Konica Minolta Inc. He received an SID award for the development of the world's largest 20-inch OLED prototype and also received SID Fellow award for the development of 100% NTSC white + color filter technology. He has worked for Kodak and IBM and is an SID executive. Dr. Tsujimura was selected as one of the "10 best engineers/researchers in the 10 best Japanese companies" by Nikkei Electronics magazine.
About the Author xi
Preface xiii
Series Editor's Foreword to the Second Edition xv
1 Introduction 1
References 5
2 OLED Devices 7
2.1 OLED Definition 7
2.1.1 History of OLED Research and Development 7
2.1.2 Luminescent Effects in Nature 8
2.1.3 Difference Between OLED, LED, and Inorganic ELs 11
2.1.3.1 Inorganic EL 11
2.1.3.2 LED 11
2.2 Basic Device Structure 12
2.3 Basic Light Emission Mechanism 14
2.3.1 Potential Energy of Molecules 14
2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO) 15
2.3.3 Configuration of Two Electrons 17
2.3.4 Spin Function 20
2.3.5 Singlet and Triplet Excitons 20
2.3.6 Charge Injection from Electrodes 24
2.3.6.1 Charge Injection by Schottky Thermionic Emission 25
2.3.6.2 Tunneling Injection 28
2.3.6.3 Vacuum-Level Shift 28
2.3.7 Charge Transfer and Recombination 29
2.3.7.1 Charge Transfer Behavior 29
2.3.7.2 Space-Charge-Limited Current 29
2.3.7.3 Poole-Frenkel conduction 32
2.3.7.4 Recombination and Generation of Excitons 33
2.4 Emission Efficiency 36
2.4.1 Internal/External Quantum Efficiency 36
2.4.2 Energy Conversion and Quenching 37
2.4.2.1 Internal Conversion 37
2.4.2.2 Intersystem Crossing 37
2.4.2.3 Doping 38
2.4.2.4 Quenching 40
2.4.3 Outcoupling Efficiency of OLED Display 42
2.4.3.1 Light Output Distribution 42
2.4.3.2 Snell's Law and Critical Angle 43
2.4.3.3 Loss Due to Light Extraction 44
2.4.3.4 Performance Enhancement by Molecular Alignment 45
2.5 Lifetime and Image Burning 46
2.5.1 Lifetime Definitions 46
2.5.2 Degradation Analysis and Design Optimization 47
2.5.3 Degradation Measurement and Mechanisms 50
2.5.3.1 Acceleration Factor and Temperature Contribution 50
2.5.3.2 Degradation Mechanism Variation 50
2.6 Technologies to Enhance the Device Performance 51
2.6.1 Thermally Activated Delayed Fluorescence 51
2.6.2 Other Types of Excited States 53
2.6.2.1 Excimer and Exciplex 53
2.6.2.2 Charge-Transfer Complex 53
2.6.3 Charge Generation Layer 54
References 56
3 OLED Manufacturing Process 61
3.1 Material Preparation 61
3.1.1 Basic Material Properties 61
3.1.1.1 Hole Injection Material 61
3.1.1.2 Hole Transportation Material 62
3.1.1.3 Emission Layer Material 62
3.1.1.4 Electron Transportation Material and Charge Blocking Material 63
3.1.2 Purification Process 67
3.2 Evaporation Process 68
3.2.1 Principle 68
3.2.2 Evaporation Sources 72
3.2.2.1 Resistive Heating Method 72
3.2.2.2 Electron Beam Evaporation 75
3.2.2.3 Monitoring Thickness Using a Quartz Oscillator 76
3.3 Encapsulation 79
3.3.1 Dark Spot and Edge Growth Defects 79
3.3.2 Light Emission from the Bottom and Top of the OLED Device 80
3.3.3 Bottom Emission and perimeter sealing 81
3.3.4 Top Emission 82
3.3.5 Encapsulation Technologies and Measurement 83
3.3.5.1 Thin-Film Encapsulation 84
3.3.5.2 Face Sealing Encapsulation 87
3.3.5.3 Frit Encapsulation 88
3.3.5.4 WVTR Measurement 88
3.4 Problem Analysis 91
3.4.1 Ionization Potential Measurement 91
3.4.2 Electron Affinity Measurement 92
Preface xiii
Series Editor's Foreword to the Second Edition xv
1 Introduction 1
References 5
2 OLED Devices 7
2.1 OLED Definition 7
2.1.1 History of OLED Research and Development 7
2.1.2 Luminescent Effects in Nature 8
2.1.3 Difference Between OLED, LED, and Inorganic ELs 11
2.1.3.1 Inorganic EL 11
2.1.3.2 LED 11
2.2 Basic Device Structure 12
2.3 Basic Light Emission Mechanism 14
2.3.1 Potential Energy of Molecules 14
2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO) 15
2.3.3 Configuration of Two Electrons 17
2.3.4 Spin Function 20
2.3.5 Singlet and Triplet Excitons 20
2.3.6 Charge Injection from Electrodes 24
2.3.6.1 Charge Injection by Schottky Thermionic Emission 25
2.3.6.2 Tunneling Injection 28
2.3.6.3 Vacuum-Level Shift 28
2.3.7 Charge Transfer and Recombination 29
2.3.7.1 Charge Transfer Behavior 29
2.3.7.2 Space-Charge-Limited Current 29
2.3.7.3 Poole-Frenkel conduction 32
2.3.7.4 Recombination and Generation of Excitons 33
2.4 Emission Efficiency 36
2.4.1 Internal/External Quantum Efficiency 36
2.4.2 Energy Conversion and Quenching 37
2.4.2.1 Internal Conversion 37
2.4.2.2 Intersystem Crossing 37
2.4.2.3 Doping 38
2.4.2.4 Quenching 40
2.4.3 Outcoupling Efficiency of OLED Display 42
2.4.3.1 Light Output Distribution 42
2.4.3.2 Snell's Law and Critical Angle 43
2.4.3.3 Loss Due to Light Extraction 44
2.4.3.4 Performance Enhancement by Molecular Alignment 45
2.5 Lifetime and Image Burning 46
2.5.1 Lifetime Definitions 46
2.5.2 Degradation Analysis and Design Optimization 47
2.5.3 Degradation Measurement and Mechanisms 50
2.5.3.1 Acceleration Factor and Temperature Contribution 50
2.5.3.2 Degradation Mechanism Variation 50
2.6 Technologies to Enhance the Device Performance 51
2.6.1 Thermally Activated Delayed Fluorescence 51
2.6.2 Other Types of Excited States 53
2.6.2.1 Excimer and Exciplex 53
2.6.2.2 Charge-Transfer Complex 53
2.6.3 Charge Generation Layer 54
References 56
3 OLED Manufacturing Process 61
3.1 Material Preparation 61
3.1.1 Basic Material Properties 61
3.1.1.1 Hole Injection Material 61
3.1.1.2 Hole Transportation Material 62
3.1.1.3 Emission Layer Material 62
3.1.1.4 Electron Transportation Material and Charge Blocking Material 63
3.1.2 Purification Process 67
3.2 Evaporation Process 68
3.2.1 Principle 68
3.2.2 Evaporation Sources 72
3.2.2.1 Resistive Heating Method 72
3.2.2.2 Electron Beam Evaporation 75
3.2.2.3 Monitoring Thickness Using a Quartz Oscillator 76
3.3 Encapsulation 79
3.3.1 Dark Spot and Edge Growth Defects 79
3.3.2 Light Emission from the Bottom and Top of the OLED Device 80
3.3.3 Bottom Emission and perimeter sealing 81
3.3.4 Top Emission 82
3.3.5 Encapsulation Technologies and Measurement 83
3.3.5.1 Thin-Film Encapsulation 84
3.3.5.2 Face Sealing Encapsulation 87
3.3.5.3 Frit Encapsulation 88
3.3.5.4 WVTR Measurement 88
3.4 Problem Analysis 91
3.4.1 Ionization Potential Measurement 91
3.4.2 Electron Affinity Measurement 92
About the Author xi
Preface xiii
Series Editor's Foreword to the Second Edition xv
1 Introduction 1
References 5
2 OLED Devices 7
2.1 OLED Definition 7
2.1.1 History of OLED Research and Development 7
2.1.2 Luminescent Effects in Nature 8
2.1.3 Difference Between OLED, LED, and Inorganic ELs 11
2.1.3.1 Inorganic EL 11
2.1.3.2 LED 11
2.2 Basic Device Structure 12
2.3 Basic Light Emission Mechanism 14
2.3.1 Potential Energy of Molecules 14
2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO) 15
2.3.3 Configuration of Two Electrons 17
2.3.4 Spin Function 20
2.3.5 Singlet and Triplet Excitons 20
2.3.6 Charge Injection from Electrodes 24
2.3.6.1 Charge Injection by Schottky Thermionic Emission 25
2.3.6.2 Tunneling Injection 28
2.3.6.3 Vacuum-Level Shift 28
2.3.7 Charge Transfer and Recombination 29
2.3.7.1 Charge Transfer Behavior 29
2.3.7.2 Space-Charge-Limited Current 29
2.3.7.3 Poole-Frenkel conduction 32
2.3.7.4 Recombination and Generation of Excitons 33
2.4 Emission Efficiency 36
2.4.1 Internal/External Quantum Efficiency 36
2.4.2 Energy Conversion and Quenching 37
2.4.2.1 Internal Conversion 37
2.4.2.2 Intersystem Crossing 37
2.4.2.3 Doping 38
2.4.2.4 Quenching 40
2.4.3 Outcoupling Efficiency of OLED Display 42
2.4.3.1 Light Output Distribution 42
2.4.3.2 Snell's Law and Critical Angle 43
2.4.3.3 Loss Due to Light Extraction 44
2.4.3.4 Performance Enhancement by Molecular Alignment 45
2.5 Lifetime and Image Burning 46
2.5.1 Lifetime Definitions 46
2.5.2 Degradation Analysis and Design Optimization 47
2.5.3 Degradation Measurement and Mechanisms 50
2.5.3.1 Acceleration Factor and Temperature Contribution 50
2.5.3.2 Degradation Mechanism Variation 50
2.6 Technologies to Enhance the Device Performance 51
2.6.1 Thermally Activated Delayed Fluorescence 51
2.6.2 Other Types of Excited States 53
2.6.2.1 Excimer and Exciplex 53
2.6.2.2 Charge-Transfer Complex 53
2.6.3 Charge Generation Layer 54
References 56
3 OLED Manufacturing Process 61
3.1 Material Preparation 61
3.1.1 Basic Material Properties 61
3.1.1.1 Hole Injection Material 61
3.1.1.2 Hole Transportation Material 62
3.1.1.3 Emission Layer Material 62
3.1.1.4 Electron Transportation Material and Charge Blocking Material 63
3.1.2 Purification Process 67
3.2 Evaporation Process 68
3.2.1 Principle 68
3.2.2 Evaporation Sources 72
3.2.2.1 Resistive Heating Method 72
3.2.2.2 Electron Beam Evaporation 75
3.2.2.3 Monitoring Thickness Using a Quartz Oscillator 76
3.3 Encapsulation 79
3.3.1 Dark Spot and Edge Growth Defects 79
3.3.2 Light Emission from the Bottom and Top of the OLED Device 80
3.3.3 Bottom Emission and perimeter sealing 81
3.3.4 Top Emission 82
3.3.5 Encapsulation Technologies and Measurement 83
3.3.5.1 Thin-Film Encapsulation 84
3.3.5.2 Face Sealing Encapsulation 87
3.3.5.3 Frit Encapsulation 88
3.3.5.4 WVTR Measurement 88
3.4 Problem Analysis 91
3.4.1 Ionization Potential Measurement 91
3.4.2 Electron Affinity Measurement 92
Preface xiii
Series Editor's Foreword to the Second Edition xv
1 Introduction 1
References 5
2 OLED Devices 7
2.1 OLED Definition 7
2.1.1 History of OLED Research and Development 7
2.1.2 Luminescent Effects in Nature 8
2.1.3 Difference Between OLED, LED, and Inorganic ELs 11
2.1.3.1 Inorganic EL 11
2.1.3.2 LED 11
2.2 Basic Device Structure 12
2.3 Basic Light Emission Mechanism 14
2.3.1 Potential Energy of Molecules 14
2.3.2 Highest Occupied and Lowest Unoccupied Molecular Orbitals (HOMO and LUMO) 15
2.3.3 Configuration of Two Electrons 17
2.3.4 Spin Function 20
2.3.5 Singlet and Triplet Excitons 20
2.3.6 Charge Injection from Electrodes 24
2.3.6.1 Charge Injection by Schottky Thermionic Emission 25
2.3.6.2 Tunneling Injection 28
2.3.6.3 Vacuum-Level Shift 28
2.3.7 Charge Transfer and Recombination 29
2.3.7.1 Charge Transfer Behavior 29
2.3.7.2 Space-Charge-Limited Current 29
2.3.7.3 Poole-Frenkel conduction 32
2.3.7.4 Recombination and Generation of Excitons 33
2.4 Emission Efficiency 36
2.4.1 Internal/External Quantum Efficiency 36
2.4.2 Energy Conversion and Quenching 37
2.4.2.1 Internal Conversion 37
2.4.2.2 Intersystem Crossing 37
2.4.2.3 Doping 38
2.4.2.4 Quenching 40
2.4.3 Outcoupling Efficiency of OLED Display 42
2.4.3.1 Light Output Distribution 42
2.4.3.2 Snell's Law and Critical Angle 43
2.4.3.3 Loss Due to Light Extraction 44
2.4.3.4 Performance Enhancement by Molecular Alignment 45
2.5 Lifetime and Image Burning 46
2.5.1 Lifetime Definitions 46
2.5.2 Degradation Analysis and Design Optimization 47
2.5.3 Degradation Measurement and Mechanisms 50
2.5.3.1 Acceleration Factor and Temperature Contribution 50
2.5.3.2 Degradation Mechanism Variation 50
2.6 Technologies to Enhance the Device Performance 51
2.6.1 Thermally Activated Delayed Fluorescence 51
2.6.2 Other Types of Excited States 53
2.6.2.1 Excimer and Exciplex 53
2.6.2.2 Charge-Transfer Complex 53
2.6.3 Charge Generation Layer 54
References 56
3 OLED Manufacturing Process 61
3.1 Material Preparation 61
3.1.1 Basic Material Properties 61
3.1.1.1 Hole Injection Material 61
3.1.1.2 Hole Transportation Material 62
3.1.1.3 Emission Layer Material 62
3.1.1.4 Electron Transportation Material and Charge Blocking Material 63
3.1.2 Purification Process 67
3.2 Evaporation Process 68
3.2.1 Principle 68
3.2.2 Evaporation Sources 72
3.2.2.1 Resistive Heating Method 72
3.2.2.2 Electron Beam Evaporation 75
3.2.2.3 Monitoring Thickness Using a Quartz Oscillator 76
3.3 Encapsulation 79
3.3.1 Dark Spot and Edge Growth Defects 79
3.3.2 Light Emission from the Bottom and Top of the OLED Device 80
3.3.3 Bottom Emission and perimeter sealing 81
3.3.4 Top Emission 82
3.3.5 Encapsulation Technologies and Measurement 83
3.3.5.1 Thin-Film Encapsulation 84
3.3.5.2 Face Sealing Encapsulation 87
3.3.5.3 Frit Encapsulation 88
3.3.5.4 WVTR Measurement 88
3.4 Problem Analysis 91
3.4.1 Ionization Potential Measurement 91
3.4.2 Electron Affinity Measurement 92