Die mathematische Biologie ist ein neues, schnell wachsendes Forschungsgebiet, zu dessen zentralen Themen die Ausbildung von Raum-Zeit-Mustern gehört. 18 Beiträge der D'Arcy-Thompson-Konferenz, die in diesem Band zusammengestellt wurden, spiegeln das ganze Spektrum dieser Forschungsrichtung wider - Entwicklungsbiologie, Reaktions-Diffusions-Systeme, Morphometrie und andere Aspekte. (05/99)
Die mathematische Biologie ist ein neues, schnell wachsendes Forschungsgebiet, zu dessen zentralen Themen die Ausbildung von Raum-Zeit-Mustern gehört. 18 Beiträge der D'Arcy-Thompson-Konferenz, die in diesem Band zusammengestellt wurden, spiegeln das ganze Spektrum dieser Forschungsrichtung wider - Entwicklungsbiologie, Reaktions-Diffusions-Systeme, Morphometrie und andere Aspekte. (05/99) Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
Wiley Series in Mathematical and Computational Biology
M.A.J. Chaplain is Co-Chief Editor, Journal of Theoretical Biology and works with the School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland. He received his PhD in Applied Mathematics from the University of Dundee in 1990, and then took up a lectureship position at the University of Bath.
Inhaltsangabe
Problems of Development: The Microcosm and the Macrocosm. Development of the Vertebrate Limb: A Model for Growth and Patterning. Pattern Formation on Butterfly Wings. Pattern Formation in Cancer. Turing Structures of the Second Kind. Pattern Formation Mechanisms in Skin and Hair: Some Experimental Tests. Some Mathematical Models for Biological Pattern Formation. On Pattern and Growth. Diversity in Pattern and Form of Biological Systems and Evolution: A Theoretical Approach. Developmental Morphologies Not Directly Specified by the Genome of the Individual. The Role of Chemotactic Cell Movement in Dictyostelium Morphogenesis. Angiogenesis: Experimental Data Relevant to Theoretical Analysis. Modelling the Growth and Form of Capillary Networks. On the Mechanochemical Theory of Biological Pattern Formation with Applications to Wound Healing and Angiogenesis. Statistics and Dynamics of Cellular Shape Changes. Shape Asymmetry and Developmental Stability. Invariance and Morphometrics: A Critical Appraisal of Statistical Techniques for Landmark Data. Statistical Shape Analysis and its Applications. Sphenoethmoidal Growth, Malgrowth, and Midfacial Profile Ontogeny and Phylogeny: Some Morphometric Approaches to the Skeletal Growth and Evolution. D'Arcy Thompson and the Problem of Biological Form. Index.
Problems of Development: The Microcosm and the Macrocosm. Development of the Vertebrate Limb: A Model for Growth and Patterning. Pattern Formation on Butterfly Wings. Pattern Formation in Cancer. Turing Structures of the Second Kind. Pattern Formation Mechanisms in Skin and Hair: Some Experimental Tests. Some Mathematical Models for Biological Pattern Formation. On Pattern and Growth. Diversity in Pattern and Form of Biological Systems and Evolution: A Theoretical Approach. Developmental Morphologies Not Directly Specified by the Genome of the Individual. The Role of Chemotactic Cell Movement in Dictyostelium Morphogenesis. Angiogenesis: Experimental Data Relevant to Theoretical Analysis. Modelling the Growth and Form of Capillary Networks. On the Mechanochemical Theory of Biological Pattern Formation with Applications to Wound Healing and Angiogenesis. Statistics and Dynamics of Cellular Shape Changes. Shape Asymmetry and Developmental Stability. Invariance and Morphometrics: A Critical Appraisal of Statistical Techniques for Landmark Data. Statistical Shape Analysis and its Applications. Sphenoethmoidal Growth, Malgrowth, and Midfacial Profile Ontogeny and Phylogeny: Some Morphometric Approaches to the Skeletal Growth and Evolution. D'Arcy Thompson and the Problem of Biological Form. Index.
Rezensionen
"...a useful resource for mathematics students...recommend anyone interested in biomathematics to look at [it]..." (Mathematics Today, Dec 2003) "...scope of the book is broad...interesting for everyone regardless of expertise in this field..." (Simulation News Europe, Dec 2003)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu