- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Edited volume written by leading experts providing state-of-art survey in on-line learning and neural networks.
Andere Kunden interessierten sich auch für
- Nishant ShuklaMachine Learning with Tensorflow47,99 €
- C. Naga BhaskarNeural Networks and Fuzzy Logic67,99 €
- John SlavioNeural Networks25,99 €
- Boubaker DaachiAdaptive Neural Networks and Robot Intelligent Control in Direct or Indirect Interaction with Humans76,99 €
- John SlavioNeural Networks30,99 €
- Recent Progress in Artificial Neural Networks144,99 €
- Shajulin BenedictDeep Learning Technologies for Social Impact213,99 €
-
-
-
Edited volume written by leading experts providing state-of-art survey in on-line learning and neural networks.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 412
- Erscheinungstermin: 1. April 2010
- Englisch
- Abmessung: 235mm x 157mm x 29mm
- Gewicht: 817g
- ISBN-13: 9780521652636
- ISBN-10: 0521652634
- Artikelnr.: 22183752
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 412
- Erscheinungstermin: 1. April 2010
- Englisch
- Abmessung: 235mm x 157mm x 29mm
- Gewicht: 817g
- ISBN-13: 9780521652636
- ISBN-10: 0521652634
- Artikelnr.: 22183752
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Foreword C. Bishop; 1. Introduction D. Saad; 2. On-line learning and
stochastic approximations Léon Bottou; 3. Exact and perturbative solutions
for the ensemble dynamics Todd Leen; 4. A statistical study of on-line
learning Noboru Murata; 5. On-line learning in switching and drifting
environments Klaus-Robert Mueller, Andreas Ziehe, Noboru Murata and
Shun-ichi Amari; 6. Parameter adaptation in stochastic optimization Luis B.
Almeida, Thibault Langlois, José D. Amaral and Alexander Plakhov; 7.
Optimal on-line learning for multilayer neural networks David Saad and
Magnus Rattray; 8. Universal asymptotics in committee machines with tree
architecture Mauro Copelli and Nestor Caticha; 9. Incorporating curvature
information in on-line learning Magnus Rattray and David Saad; 10. Annealed
on-line learning in multilayer networks Siegfried Bös and Shun-ichi Amari;
11. On-line learning of prototypes and principal components Michael Biehl,
Ansgar Freking, Matthias Hölzer, Georg Reents and Enno Schlösser; 12.
On-line learning with time-correlated patterns Tom Heskes and Wim
Wiegerinck; 13. On-line learning from finite training sets David Barber and
Peter Sollich; 14. Dynamics of supervised learning with restricted training
sets Anthony C. C. Coolen and David Saad; 15. On-line learning of a
decision boundary with and without queries Yoshiyuki Kabashima and Shigeru
Shinomoto; 16. A Bayesian approach to on-line learning Manfred Opper; 17.
Optimal perception learning: an on-line Bayesian approach Sara A. Solla and
Ole Winther.
stochastic approximations Léon Bottou; 3. Exact and perturbative solutions
for the ensemble dynamics Todd Leen; 4. A statistical study of on-line
learning Noboru Murata; 5. On-line learning in switching and drifting
environments Klaus-Robert Mueller, Andreas Ziehe, Noboru Murata and
Shun-ichi Amari; 6. Parameter adaptation in stochastic optimization Luis B.
Almeida, Thibault Langlois, José D. Amaral and Alexander Plakhov; 7.
Optimal on-line learning for multilayer neural networks David Saad and
Magnus Rattray; 8. Universal asymptotics in committee machines with tree
architecture Mauro Copelli and Nestor Caticha; 9. Incorporating curvature
information in on-line learning Magnus Rattray and David Saad; 10. Annealed
on-line learning in multilayer networks Siegfried Bös and Shun-ichi Amari;
11. On-line learning of prototypes and principal components Michael Biehl,
Ansgar Freking, Matthias Hölzer, Georg Reents and Enno Schlösser; 12.
On-line learning with time-correlated patterns Tom Heskes and Wim
Wiegerinck; 13. On-line learning from finite training sets David Barber and
Peter Sollich; 14. Dynamics of supervised learning with restricted training
sets Anthony C. C. Coolen and David Saad; 15. On-line learning of a
decision boundary with and without queries Yoshiyuki Kabashima and Shigeru
Shinomoto; 16. A Bayesian approach to on-line learning Manfred Opper; 17.
Optimal perception learning: an on-line Bayesian approach Sara A. Solla and
Ole Winther.
Foreword C. Bishop; 1. Introduction D. Saad; 2. On-line learning and
stochastic approximations Léon Bottou; 3. Exact and perturbative solutions
for the ensemble dynamics Todd Leen; 4. A statistical study of on-line
learning Noboru Murata; 5. On-line learning in switching and drifting
environments Klaus-Robert Mueller, Andreas Ziehe, Noboru Murata and
Shun-ichi Amari; 6. Parameter adaptation in stochastic optimization Luis B.
Almeida, Thibault Langlois, José D. Amaral and Alexander Plakhov; 7.
Optimal on-line learning for multilayer neural networks David Saad and
Magnus Rattray; 8. Universal asymptotics in committee machines with tree
architecture Mauro Copelli and Nestor Caticha; 9. Incorporating curvature
information in on-line learning Magnus Rattray and David Saad; 10. Annealed
on-line learning in multilayer networks Siegfried Bös and Shun-ichi Amari;
11. On-line learning of prototypes and principal components Michael Biehl,
Ansgar Freking, Matthias Hölzer, Georg Reents and Enno Schlösser; 12.
On-line learning with time-correlated patterns Tom Heskes and Wim
Wiegerinck; 13. On-line learning from finite training sets David Barber and
Peter Sollich; 14. Dynamics of supervised learning with restricted training
sets Anthony C. C. Coolen and David Saad; 15. On-line learning of a
decision boundary with and without queries Yoshiyuki Kabashima and Shigeru
Shinomoto; 16. A Bayesian approach to on-line learning Manfred Opper; 17.
Optimal perception learning: an on-line Bayesian approach Sara A. Solla and
Ole Winther.
stochastic approximations Léon Bottou; 3. Exact and perturbative solutions
for the ensemble dynamics Todd Leen; 4. A statistical study of on-line
learning Noboru Murata; 5. On-line learning in switching and drifting
environments Klaus-Robert Mueller, Andreas Ziehe, Noboru Murata and
Shun-ichi Amari; 6. Parameter adaptation in stochastic optimization Luis B.
Almeida, Thibault Langlois, José D. Amaral and Alexander Plakhov; 7.
Optimal on-line learning for multilayer neural networks David Saad and
Magnus Rattray; 8. Universal asymptotics in committee machines with tree
architecture Mauro Copelli and Nestor Caticha; 9. Incorporating curvature
information in on-line learning Magnus Rattray and David Saad; 10. Annealed
on-line learning in multilayer networks Siegfried Bös and Shun-ichi Amari;
11. On-line learning of prototypes and principal components Michael Biehl,
Ansgar Freking, Matthias Hölzer, Georg Reents and Enno Schlösser; 12.
On-line learning with time-correlated patterns Tom Heskes and Wim
Wiegerinck; 13. On-line learning from finite training sets David Barber and
Peter Sollich; 14. Dynamics of supervised learning with restricted training
sets Anthony C. C. Coolen and David Saad; 15. On-line learning of a
decision boundary with and without queries Yoshiyuki Kabashima and Shigeru
Shinomoto; 16. A Bayesian approach to on-line learning Manfred Opper; 17.
Optimal perception learning: an on-line Bayesian approach Sara A. Solla and
Ole Winther.