180,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
90 °P sammeln
  • Gebundenes Buch

This book proposes and reviews comprehensive strategies based on optical electronics for constructing optoelectronic systems with minimized optics excess. It describes the core technologies such as self-organized optical waveguides based on self-organized lightwave network (SOLNET), three-dimensional optical circuits, material-saving heterogeneous thin-film device integration process (PL-Pack with SORT), and high-speed/small-size light modulators and optical switches. The book also presents applications of optical electronics, including integrated optical interconnects within computers and…mehr

Produktbeschreibung
This book proposes and reviews comprehensive strategies based on optical electronics for constructing optoelectronic systems with minimized optics excess. It describes the core technologies such as self-organized optical waveguides based on self-organized lightwave network (SOLNET), three-dimensional optical circuits, material-saving heterogeneous thin-film device integration process (PL-Pack with SORT), and high-speed/small-size light modulators and optical switches. The book also presents applications of optical electronics, including integrated optical interconnects within computers and massive optical switching systems utilizing three-dimensional self-organized optical circuits, solar energy conversion systems, and bio/medical photonics such as cancer therapy.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Tetsuzo Yoshimura received his B.Sc. degree in physics from Tohoku University, Sendai, Japan, in 1974, and M.Sc. and Ph.D. degrees in physics from Kyoto University, Kyoto, Japan, in 1976 and 1985, respectively. In 1976, he joined Fujitsu Laboratories Ltd. and was engaged in research on optoelectronic devices. From 1997 to 2000, he was with Fujitsu Computer Packaging Technologies, Inc., San Jose, CA, in charge of research on board/chip-level optical wiring. He is currently a professor at Tokyo University of Technology. He studies self-organized and three-dimensional optical circuits, resource-saving heterogeneous integration, and organic tailored materials grown by MLD, and also their applications to optical interconnects within computers, massive optical switching systems, solar energy conversion systems, and bio/medical photonics.