35,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
18 °P sammeln
  • Broschiertes Buch

In this work, we have studied the quadratic cost optimal control problems and their numerical analysis of nonlinear parabolic distributed parameter systems. After established the fundamental existence and uniqueness results, we have developed the nonlinear optimal control theory for the equations having uniform Lipschitz continuous nonlinearity. Then we have applied the theoretical results to practical nonlinear parabolic partial differential equations including reaction-diffusion equations, diffusion Hopfield neural network equations. Furthermore, numerical evidences for these issues have…mehr

Produktbeschreibung
In this work, we have studied the quadratic cost optimal control problems and their numerical analysis of nonlinear parabolic distributed parameter systems. After established the fundamental existence and uniqueness results, we have developed the nonlinear optimal control theory for the equations having uniform Lipschitz continuous nonlinearity. Then we have applied the theoretical results to practical nonlinear parabolic partial differential equations including reaction-diffusion equations, diffusion Hopfield neural network equations. Furthermore, numerical evidences for these issues have also been solved by using variational method and finite element approach.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Quan-Fang Wang was awarded the Master,Doctor Degrees in Computer and System Sciences, Mathematical and Material Sciences at Kobe University,Japan,1999,2002, respectively.Work experience:Chinese Academy of Sciences,The Chinese University of Hong Kong. Dr. Quan-Fang Wang is on the Marquis Who's Who in the World(28th Ed)2011, (31st-32nd Ed)2014,2015.