Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view. The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.
Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view.
The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory. Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Luigi Ambrosio, Scuola Normale Superiore, Pisa, Italy / Luis A. Caffarelli, Texas University, Austin, TX, USA / Yann Brenier, University Nice, Laboratoire L. A. Dieudonné France / Giuseppe Buttazzo, Pisa University, Italy / Cedric Villani, École Normale Supérieure de Lyon, France
Inhaltsangabe
Preface.- L.A. Caffarelli: The Monge-Ampère equation and Optimal Transportation, an elementary view.- G. Buttazzo, L. De Pascale: Optimal Shapes and Masses, and Optimal Transportation Problems.- C. Villani: Optimal Transportation, dissipative PDE's and functional inequalities.- Y. Brenier: Extended Monge-Kantorowich Theory.- L. Ambrosio, A. Pratelli: Existence and Stability results in the L1 Theory of Optimal Transportation.
Preface.- L.A. Caffarelli: The Monge-Ampère equation and Optimal Transportation, an elementary view.- G. Buttazzo, L. De Pascale: Optimal Shapes and Masses, and Optimal Transportation Problems.- C. Villani: Optimal Transportation, dissipative PDE's and functional inequalities.- Y. Brenier: Extended Monge-Kantorowich Theory.- L. Ambrosio, A. Pratelli: Existence and Stability results in the L1 Theory of Optimal Transportation.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826