Seit der erstmaligen Realisierung des CO2-Lasers im Jahre 1964 durch Patel [1] hat die ser Gaslaser eine diversifizierte Entwicklung mit extremen Leistungssteigerungen durchge macht, von anfii.nglich einigen mW bis heute einige 10 kW. Nicht zuletzt dadurch gewinnt er seit einigen Jahren als thermisches Werkzeug fiir industrielle Anwendungen zuneh mend an Bedeutung. Insbesondere in der Fertigung hat er sich sowohl in traditionellen Verfahren wie Trennen und Fiigen, als auch bei neuartigen Techniken wie Abtragen und Oberfiii.chenveredeln (Umschmelzen, Legieren etc.) bewiihrt. Der Vorteil…mehr
Seit der erstmaligen Realisierung des CO2-Lasers im Jahre 1964 durch Patel [1] hat die ser Gaslaser eine diversifizierte Entwicklung mit extremen Leistungssteigerungen durchge macht, von anfii.nglich einigen mW bis heute einige 10 kW. Nicht zuletzt dadurch gewinnt er seit einigen Jahren als thermisches Werkzeug fiir industrielle Anwendungen zuneh mend an Bedeutung. Insbesondere in der Fertigung hat er sich sowohl in traditionellen Verfahren wie Trennen und Fiigen, als auch bei neuartigen Techniken wie Abtragen und Oberfiii.chenveredeln (Umschmelzen, Legieren etc.) bewiihrt. Der Vorteil gegeniiber bis herigen Technologien ist die zielgerichtete und regelbare Einbringung hochster Leistungs dichten in das Werkstiick. Der folgende kurze historische Uberblick zeigt die wesentlichen Entwicklungsschritte auf, welche diese zunehmende Akzeptanz des CO2-Lasers in der Industrie erst ermoglichten. Eine vollstii.ndige Aufziihlung sii.mtlicher Varianten wird dabei nicht angestrebt, vielmehr stehen die grundlegenden Konzepte und Strategien zur Steigerung d.er Laserleistung und der Strahlqualitii.t (Fokussierbarkeit) im Vordergrund. Aus industrieller Sicht kommen noch wirtschaftliche Aspekte wie niedrige Kosten, Kompaktheit und Zuverliissigkeit der Strahlquelle hinzu. Basierend auf den physikalischen Prinzipien der Strahlerzeugung haben sich unterschied lich erfolgreiche Anregungstechniken und Kiihlkonzepte etabliert, aus denen sich Ansatze fiir Optimierungen und zukiinftige Entwicklungen ableiten lassen.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
Laser in der Materialbearbeitung, Forschungsberichte des IFSW
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Symbole und Abkürzungen.- 1 Einleitung.- 1.1 Historischer Überblick der CO2-Laserentwicklung.- 1.2 Zielsetzung und Gliederung der Arbeit.- 2 Die HF-Gasentladung.- 2.1 Allgemeine Charakteristiken.- 2.2 Modell der HF-Entladung.- 2.3 Einkopplung der HF-Leistung.- 3 Anpassung des HF-Generators an die Entladung.- 3.1 Der HF-Generator.- 3.2 Kalibrierung der HF-Generatorleistung.- 3.3 Das Anpaßnetzwerk.- 3.4 Erstellen der elektrischen Schaltbilder.- 3.5 Vergleich der gemessenen und gerechneten Impedanzkurven.- 3.6 HF-Verhalten von Anpaßnetzwerk und Laser.- 3.7 Überblick der wichtigsten Ergebnisse.- 4 Messung des Plasmawiderstands.- 4.1 Rechnerische Simulation der Impedanz im Anpaßfall.- 4.2 Messung mit dem Leitungsreflektometer.- 4.3 Strommessungen.- 4.4 Strommessung bei segmentierten Elektroden.- 4.5 Überblick der wichtigsten Ergebnisse.- 5 Optimierungsparameter.- 5.1 Geometrische Parameter.- 5.2 Entladungsphysikalische Parameter.- 5.3 Ermittlung elektrophysikalischer Größen aus Impedanz und HF-Leistung.- 5.4 Fluidmechanische Parameter.- 5.5 Messung von Temperatur, Druck und Strömungsgeschwindigkeit.- 6 Untersuchung der Entladungshomogenität.- 6.1 Experimenteller Aufbau.- 6.2 Versuchsparameter.- 6.3 Die Rohrlänge und die HF-Zuführung.- 6.4 Kurzes Rohr mit asymmetrischer HF-Zuführung.- 6.5 Kurzes Rohr mit Symmetrisierspule.- 6.6 Visuelle Untersuchung der Stabilitätsgrenzen.- 6.7 Skalierung der Gasentladung mittels Impedanzmessungen.- 6.8 Ergebnisse der Messungen.- 6.9 Überblick der wichtigsten Ergebnisse.- 7 Interferometrische Untersuchungen.- 7.1 Vorbetrachtungen zur optischen Deformation.- 7.2 Versuchsparameter.- 7.3 Meßaufbau und Meßprinzip.- 7.4 Meßergebnisse.- 7.5 Überblick der wichtigsten Ergebnisse.- 8 Messung der Kleinsignalverstärkung.- 8.1 DieKleinsignalverstärkung.- 8.2 Interpretation der Meßergebnisse.- 8.3 Meßaufbau und Versuchsdurchführung.- 8.4 Entladungsrohre mit kreisförmigem Querschnitt.- 8.5 Entladungsrohre mit rechteckförmigem Querschnitt.- 8.6 Überblick der wichtigsten Ergebnisse.- 9 Messung der Großsignalverstärkung.- 9.1 Meßprinzipien.- 9.2 Meßaufbau der Verstärkermethode.- 9.3 Meßergebnisse der Verstärkermethode.- 9.4 Überprüfung der Meßergebnisse mit Hilfe der Resonatormethode.- 9.5 Überblick der wichtigsten Ergebnisse.- 10 Zusammenfassung.- A HF-Entladung.- A.1 Lösung der Bewegungsgleichung des Elektrons.- A.2 Symmetrierung der Elektrodenspannung.- B Gasgemische.- B.1 Kenngrößen für Gemische idealer Gase.- C Linienbreiten.- C.1 Berechnung der Druckverbreiterung.- C.2 Berechnung der Dopplerverbreiterung.- D Verstärkermethode.- D.1 Berücksichtigung der Leistungsdichteverteilung.- Worte des Dankes.
Symbole und Abkürzungen.- 1 Einleitung.- 1.1 Historischer Überblick der CO2-Laserentwicklung.- 1.2 Zielsetzung und Gliederung der Arbeit.- 2 Die HF-Gasentladung.- 2.1 Allgemeine Charakteristiken.- 2.2 Modell der HF-Entladung.- 2.3 Einkopplung der HF-Leistung.- 3 Anpassung des HF-Generators an die Entladung.- 3.1 Der HF-Generator.- 3.2 Kalibrierung der HF-Generatorleistung.- 3.3 Das Anpaßnetzwerk.- 3.4 Erstellen der elektrischen Schaltbilder.- 3.5 Vergleich der gemessenen und gerechneten Impedanzkurven.- 3.6 HF-Verhalten von Anpaßnetzwerk und Laser.- 3.7 Überblick der wichtigsten Ergebnisse.- 4 Messung des Plasmawiderstands.- 4.1 Rechnerische Simulation der Impedanz im Anpaßfall.- 4.2 Messung mit dem Leitungsreflektometer.- 4.3 Strommessungen.- 4.4 Strommessung bei segmentierten Elektroden.- 4.5 Überblick der wichtigsten Ergebnisse.- 5 Optimierungsparameter.- 5.1 Geometrische Parameter.- 5.2 Entladungsphysikalische Parameter.- 5.3 Ermittlung elektrophysikalischer Größen aus Impedanz und HF-Leistung.- 5.4 Fluidmechanische Parameter.- 5.5 Messung von Temperatur, Druck und Strömungsgeschwindigkeit.- 6 Untersuchung der Entladungshomogenität.- 6.1 Experimenteller Aufbau.- 6.2 Versuchsparameter.- 6.3 Die Rohrlänge und die HF-Zuführung.- 6.4 Kurzes Rohr mit asymmetrischer HF-Zuführung.- 6.5 Kurzes Rohr mit Symmetrisierspule.- 6.6 Visuelle Untersuchung der Stabilitätsgrenzen.- 6.7 Skalierung der Gasentladung mittels Impedanzmessungen.- 6.8 Ergebnisse der Messungen.- 6.9 Überblick der wichtigsten Ergebnisse.- 7 Interferometrische Untersuchungen.- 7.1 Vorbetrachtungen zur optischen Deformation.- 7.2 Versuchsparameter.- 7.3 Meßaufbau und Meßprinzip.- 7.4 Meßergebnisse.- 7.5 Überblick der wichtigsten Ergebnisse.- 8 Messung der Kleinsignalverstärkung.- 8.1 DieKleinsignalverstärkung.- 8.2 Interpretation der Meßergebnisse.- 8.3 Meßaufbau und Versuchsdurchführung.- 8.4 Entladungsrohre mit kreisförmigem Querschnitt.- 8.5 Entladungsrohre mit rechteckförmigem Querschnitt.- 8.6 Überblick der wichtigsten Ergebnisse.- 9 Messung der Großsignalverstärkung.- 9.1 Meßprinzipien.- 9.2 Meßaufbau der Verstärkermethode.- 9.3 Meßergebnisse der Verstärkermethode.- 9.4 Überprüfung der Meßergebnisse mit Hilfe der Resonatormethode.- 9.5 Überblick der wichtigsten Ergebnisse.- 10 Zusammenfassung.- A HF-Entladung.- A.1 Lösung der Bewegungsgleichung des Elektrons.- A.2 Symmetrierung der Elektrodenspannung.- B Gasgemische.- B.1 Kenngrößen für Gemische idealer Gase.- C Linienbreiten.- C.1 Berechnung der Druckverbreiterung.- C.2 Berechnung der Dopplerverbreiterung.- D Verstärkermethode.- D.1 Berücksichtigung der Leistungsdichteverteilung.- Worte des Dankes.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826