A modern and unique treatment of process optimization which presents a thorough exposition of applications and algorithms in sufficient detail for practical use. A perfect tool for advanced undergraduate and graduate courses in chemical and biochemical engineering.
A modern and unique treatment of process optimization which presents a thorough exposition of applications and algorithms in sufficient detail for practical use. A perfect tool for advanced undergraduate and graduate courses in chemical and biochemical engineering.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Vassilios S. Vassiliadis is a Senior Lecturer in the Department of Chemical Engineering at the University of Cambridge. He is also the CEO and CTO of the spin-out company, Cambridge Simulation Solutions LTD.
Inhaltsangabe
Part I. Overview of Optimization: 1. Introduction to optimization Part II. From General Mathematical Background to General Nonlinear Programming Problems (NLP): 2. General concepts 3. Convexity 4. Quadratic functions 5. Minimization in one dimension 6. Unconstrained multivariate gradient-based minimization 7. Constrained nonlinear programming problems (NLP) 8. Penalty and barrier function methods 9. Interior point methods (IPMs), a detailed analysis Part III. Formulation and Solution of Linear Programming (LP) Problem Models: 10. Introduction to LP models 11. Numerical solution of LP problems using the simplex method 12. A sampler of LP problem formulations 13. Regression revisited, using LP to fit linear models 14. Network flow problems 15, LP and sensitivity analysis, in brief Part IV. Further Topics in Optimization: 16. Multiobjective optimilzation problem (MOP) 17. Stochastic optimization problem (SOP) 18. Mixed integer programming 19. Global optimization 20. Optical control problems (dynamic optimization) 21. System identification and model predictive control.
Part I. Overview of Optimization: 1. Introduction to optimization Part II. From General Mathematical Background to General Nonlinear Programming Problems (NLP): 2. General concepts 3. Convexity 4. Quadratic functions 5. Minimization in one dimension 6. Unconstrained multivariate gradient-based minimization 7. Constrained nonlinear programming problems (NLP) 8. Penalty and barrier function methods 9. Interior point methods (IPMs), a detailed analysis Part III. Formulation and Solution of Linear Programming (LP) Problem Models: 10. Introduction to LP models 11. Numerical solution of LP problems using the simplex method 12. A sampler of LP problem formulations 13. Regression revisited, using LP to fit linear models 14. Network flow problems 15, LP and sensitivity analysis, in brief Part IV. Further Topics in Optimization: 16. Multiobjective optimilzation problem (MOP) 17. Stochastic optimization problem (SOP) 18. Mixed integer programming 19. Global optimization 20. Optical control problems (dynamic optimization) 21. System identification and model predictive control.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826