- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins…mehr
Andere Kunden interessierten sich auch für
- Warren J HehreAB Initio Molecular Orbital Theory453,99 €
- Alessandro Trovarelli & Paolo FornasieroCATALYSIS BY CERIA & REL MAT(2E)399,99 €
- Stuart A. RiceAdvances in Chemical Physics, Volume 137319,99 €
- Neutrons in Soft Matter216,99 €
- D. A. MazziottiReduced-Density-Matrix Mechanics318,99 €
- Dmitri G FedorovCOMPLETE GUIDE TO FRAGMENT MOLECULAR ORBITAL METHOD GAMESS145,99 €
- Valerio MagnascoModels for Bonding in Chemistry63,99 €
-
-
-
Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developing models and reviewing molecular orbital theory. Next, the book explores orbitals in the organic-main group as well as in solids. Lastly, the book examines orbital interaction patterns that occur in inorganic-organometallic fields as well as cluster chemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised and updated with new discoveries and computational tools since the publication of the first edition more than twenty-five years ago. Among the new content, readers will find: * Two new chapters dedicated to surface science and magnetic properties * Additional examples of quantum calculations, focusing on inorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers to test their grasp of new concepts as they progress through the text. Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for both researchers and students in organic, inorganic, solid state, materials, and computational chemistry. All readers will discover the underlying structure that unites all disciplines in chemistry.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- 2nd Revised, Updated edition
- Seitenzahl: 848
- Erscheinungstermin: 8. April 2013
- Englisch
- Abmessung: 286mm x 221mm x 49mm
- Gewicht: 2332g
- ISBN-13: 9780471080398
- ISBN-10: 047108039X
- Artikelnr.: 23172798
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- 2nd Revised, Updated edition
- Seitenzahl: 848
- Erscheinungstermin: 8. April 2013
- Englisch
- Abmessung: 286mm x 221mm x 49mm
- Gewicht: 2332g
- ISBN-13: 9780471080398
- ISBN-10: 047108039X
- Artikelnr.: 23172798
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
THOMAS A. ALBRIGHT, PhD, is Professor Emeritus in theDepartment of Chemistry at the University of Houston. He was aCamille and Henry Dreyfus Teacher-Scholar and an Alfred P. SloanResearch Fellow. He has been interested in exploring reactiondynamics in organometallic chemistry. The late JEREMY K. BURDETT, PhD, was Professor and Chairof the Chemistry Department at the University of Chicago. Dr.Burdett was awarded the Tilden Prize and Meldola Medal by the RoyalSociety of Chemistry. He was also a Camille and Henry DreyfusTeacher-Scholar and a Fellow of the John Guggenheim MemorialFoundation and Alfred P. Sloan Foundation. MYUNG-HWAN WHANGBO, PhD, is Distinguished Professor inthe Chemistry Department of North Carolina State University. He hasbeen awarded the Camille and Henry Dreyfus Fellowship, theAlexander von Humboldt Research Award to Senior Scientists, theHo-Am Prize in Science, and Docteur Honoris Causa from Universit deNantes.
Preface xi About the Authors xiii Chapter 1 Atomic and Molecular Orbitals 1 1.1 Introduction 1 1.2 Atomic Orbitals 1 1.3 Molecular Orbitals 7 Problems 13 References 14 Chapter 2 Concepts of Bonding and Orbital Interaction 15 2.1 Orbital Interaction Energy 15 2.1.1 Degenerate Interaction 16 2.1.2 Nondegenerate Interaction 18 2.2 Molecular Orbital Coefficients 20 2.2.1 Degenerate Interaction 21 2.2.2 Nondegenerate Interaction 22 2.3 The Two-Orbital Problem-Summary 24 2.4 Electron Density Distribution 26 Problems 31 References 31 Chapter 3 Perturbational Molecular Orbital Theory 32 3.1 Introduction 32 3.2 Intermolecular Perturbation 35 3.3 Linear H3, HF, and the Three-Orbital Problem 38 3.4 Degenerate Perturbation 43 Problems 45 References 46 Chapter 4 Symmetry 47 4.1 Introduction 47 4.2 Symmetry of Molecules 47 4.3 Representations of Groups 53 4.4 Symmetry Properties of Orbitals 59 4.5 Symmetry-Adapted Wavefunctions 62 4.6 Direct Products 65 4.7 Symmetry Properties, Integrals, and the Noncrossing Rule 67 4.8 Principles of Orbital Construction Using Symmetry Principles 69 4.9 Symmetry Properties of Molecular Vibrations 73 Problems 75 References 77 Chapter 5 Molecular Orbital Construction from Fragment Orbitals 78 5.1 Introduction 78 5.2 Triangular H3 78 5.3 Rectangular and Square Planar H4 82 5.4 Tetrahedral H4 84 5.5 Linear H4 86 5.6 Pentagonal H5 and Hexagonal H6 88 5.7 Orbitals of Cyclic Systems 91 Problems 94 References 96 Chapter 6 Molecular Orbitals of Diatomic Molecules and Electronegativity Perturbation 97 6.1 Introduction 97 6.2 Orbital Hybridization 98 6.3 Molecular Orbitals of Diatomic Molecules 99 6.4 Electronegativity Perturbation 105 6.5 Photoelectron Spectroscopy and Through-Bond Conjugation 112 Problems 118 References 122 Chapter 7 Molecular Orbitals and Geometrical Perturbation 123 7.1 Molecular Orbitals of AH2 123 7.2 Geometrical Perturbation 128 7.3 Walsh Diagrams 131 7.4 Jahn-Teller Distortions 134 7.4.1 First-Order Jahn-Teller Distortion 135 7.4.2 Second-Order Jahn-Teller Distortion 136 7.4.3 Three-Center Bonding 139 7.5 Bond Orbitals and Photoelectron Spectra Of AH2 Molecules 141 Problems 147 References 150 Chapter 8 State Wavefunctions and State Energies 151 8.1 Introduction 151 8.2 The Molecular Hamiltonian and State Wavefunctions 152 8.3 Fock Operator 154 8.4 State Energy 156 8.5 Excitation Energy 157 8.6 Ionization Potential and Electron Affinity 160 8.7 Electron Density Distribution and Magnitudes of Coulomb and Exchange Repulsions 160 8.8 Low versus High Spin States 162 8.9 Electron-Electron Repulsion and Charged Species 164 8.10 Configuration Interaction 165 8.11 Toward More Quantitative Treatments 170 8.12 The Density Functional Method 174 Problems 176 References 177 Chapter 9 Molecular Orbitals of Small Building Blocks 179 9.1 Introduction 179 9.2 The AH System 179 9.3 Shapes of AH3 Systems 182 9.4
-Bonding Effects of Ligands 190 9.5 The AH4 System 193 9.6 The AHn Series-Some Generalizations 198 Problems 201 References 202 Chapter 10 Molecules with Two Heavy Atoms 204 10.1 Introduction 204 10.2 A2 H6 Systems 204 10.3 12-Electron A2 H4 Systems 208 10.3.1 Sudden Polarization 211 10.3.2 Substituent Effects 214 10.3.3 Dimerization and Pyramidalization of AH 2 218 10.4 14-Electron AH2 BH2 Systems 220 10.5 AH3 BH2 Systems 223 10.6 AH3 BH Systems 232 Problems 234 References 238 Chapter 11 Orbital Interactions through Space and through Bonds 241 11.1 Introduction 241 11.2 In-Plane
orbitals of Small Rings 241 11.2.1 Cyclopropane 241 11.2.2 Cyclobutane 246 11.3 Through-Bond Interaction 253 11.3.1 The Nature of Through-Bond Coupling 253 11.3.2 Other Through-Bond Coupling Units 256 11.4 Breaking a C-C Bond 258 Problems 265 References 269 Chapter 12 Polyenes and Conjugated Systems 272 12.1 Acyclic Polyenes 272 12.2 Hückel Theory 274 12.3 Cyclic Systems 277 12.4 Spin Polarization 285 12.5 Low- versus High-Spin States in Polyenes 289 12.6 Cross-Conjugated Polyenes 291 12.7 Perturbations of Cyclic Systems 294 12.8 Conjugation in Three Dimensions 303 Problems 306 References 310 Chapter 13 Solids 313 13.1 Energy Bands 313 13.2 Distortions in One-Dimensional Systems 328 13.3 Other One-Dimensional Systems 334 13.4 Two- and Three-Dimensional Systems 339 13.5 Electron Counting and Structure 350 13.6 High-Spin and Low-Spin Considerations 353 Problems 353 References 357 Chapter 14 Hypervalent Molecules 359 14.1 Orbitals of Octahedrally Based Molecules 359 14.2 Solid-State Hypervalent Compounds 373 14.3 Geometries of Hypervalent Molecules 383 Problems 392 References 399 Chapter 15 Transition Metal Complexes: A Starting Point at the Octahedron 401 15.1 Introduction 401 15.2 Octahedral ML6 402 15.3
-Effects in an Octahedron 406 15.4 Distortions from an Octahedral Geometry 416 15.5 The Octahedron in the Solid State 423 Problems 431 References 434 Chapter 16 Square Planar, Tetrahedral ML 4 Complexes, and Electron Counting 436 16.1 Introduction 436 16.2 The Square Planar ML4 Molecule 436 16.3 Electron Counting 438 16.4 The Square Planar-Tetrahedral ML4 Interconversion 448 16.5 The Solid State 453 Problems 460 References 463 Chapter 17 Five Coordination 465 17.1 Introduction 465 17.2 The C4v M5 Fragment 466 17.3 Five Coordination 468 17.4 Molecules Built Up from ML5 Fragments 480 17.5 Pentacoordinate Nitrosyls 489 17.6 Square Pyramids in The Solid State 492 Problems 498 References 500 Chapter 18 The C2v ML3 Fragment 503 18.1 Introduction 503 18.2 The Orbitals of A C2v ML3 Fragment 503 18.3 ML3-Containing Metallacycles 511 18.4 Comparison of C2v ML3 and C4v ML5 Fragments 518 Problems 523 References 525 Chapter 19 The ML2 and ML4 Fragments 527 19.1 Development of the C2v ML4 Fragment Orbitals 527 19.2 The Fe(CO)4 Story 529 19.3 Olefin-ML 4 Complexes and M2 L8 Dimers 533 19.4 The C2v ML2 Fragment 537 19.5 Polyene-ML2 Complexes 539 19.6 Reductive Elimination and Oxidative Addition 552 Problems 561 References 566 Chapter 20 Complexes of ML3 , MCp and Cp2 M570 20.1 Derivation of Orbitals for a C3v ML3 Fragment 570 20.2 The CpM Fragment Orbitals 582 20.3 Cp2 M and Metallocenes 592 20.4 Cp2 MLn Complexes 595 Problems 607 References 613 Chapter 21 The Isolobal Analogy 616 21.1 Introduction 616 21.2 Generation of Isolobal Fragments 617 21.3 Caveats 621 21.4 Illustrations of the Isolobal Analogy 623 21.5 Reactions 634 21.6 Extensions 639 Problems 646 References 649 Chapter 22 Cluster Compounds 653 22.1 Types of Cluster Compounds 653 22.2 Cluster Orbitals 657 22.3 Wade's Rules 660 22.4 Violations 671 22.5 Extensions 677 Problems 681 References 687 Chapter 23 Chemistry on the Surface 691 23.1 Introduction 691 23.2 General Structural Considerations 693 23.3 General Considerations of Adsorption on Surfaces 696 23.4 Diatomics on a Surface 699 23.5 The Surface of Semiconductors 721 Problems 728 References 731 Chapter 24 Magnetic Properties 735 24.1 Introduction 735 24.2 The Magnetic Insulating State 736 24.2.1 Electronic Structures 736 24.2.2 Factors Affecting the Effective On-Site Repulsion 738 24.2.3 Effect of Spin Arrangement on the Band Gap 740 24.3 Properties Associated with the Magnetic Moment 741 24.3.1 The Magnetic Moment 741 24.3.2 Magnetization 743 24.3.3 Magnetic Susceptibility 743 24.3.4 Experimental Investigation of Magnetic Energy Levels 745 24.4 Symmetric Spin Exchange 745 24.4.1 Mapping Analysis for a Spin Dimer 745 24.4.2 Through-Space and Through-Bond Orbital Interactions Leading to Spin Exchange 748 24.4.3 Mapping Analysis Based on Broken-Symmetry States 751 24.5 Magnetic Structure 754 24.5.1 Spin Frustration and Noncollinear Spin Arrangement 754 24.5.2 Long-Range Antiferromagnetic Order 755 24.5.3 Ferromagnetic and Ferromagnetic-Like Transitions 759 24.5.4 Typical Cases Leading to Ferromagnetic Interaction 760 24.5.5 Short-Range Order 763 24.6 The Energy Gap in the Magnetic Energy Spectrum 763 24.6.1 Spin Gap and Field-Induced Magnetic Order 763 24.6.2 Magnetization Plateaus 765 24.7 Spin-Orbit Coupling 766 24.7.1 Spin Orientation 766 24.7.2 Single-Ion Anisotropy 770 24.7.3 Uniaxial Magnetism versus Jahn-Teller Instability 771 24.7.4 The Dzyaloshinskii-Moriya Interaction 774 24.7.5 Singlet-Triplet Mixing Under Spin-Orbit Coupling 777 24.8 What Appears versus What Is 778 24.8.1 Idle Spin in Cu3(OH)4SO4 778 24.8.2 The FM-AFM versus AFM-AFM Chain 779 24.8.3 Diamond Chains 780 24.8.4 Spin Gap Behavior of a Two-Dimensional Square Net 782 24.9 Model Hamiltonians Beyond the Level of Spin Exchange 785 24.10 Summary Remarks 785 Problems 786 References 789 Appendix I Perturbational Molecular Orbital Theory 793 Appendix II Some Common Group Tables 803 Appendix III Normal Modes for Some Common Structural Types 808 Index 813
-Bonding Effects of Ligands 190 9.5 The AH4 System 193 9.6 The AHn Series-Some Generalizations 198 Problems 201 References 202 Chapter 10 Molecules with Two Heavy Atoms 204 10.1 Introduction 204 10.2 A2 H6 Systems 204 10.3 12-Electron A2 H4 Systems 208 10.3.1 Sudden Polarization 211 10.3.2 Substituent Effects 214 10.3.3 Dimerization and Pyramidalization of AH 2 218 10.4 14-Electron AH2 BH2 Systems 220 10.5 AH3 BH2 Systems 223 10.6 AH3 BH Systems 232 Problems 234 References 238 Chapter 11 Orbital Interactions through Space and through Bonds 241 11.1 Introduction 241 11.2 In-Plane
orbitals of Small Rings 241 11.2.1 Cyclopropane 241 11.2.2 Cyclobutane 246 11.3 Through-Bond Interaction 253 11.3.1 The Nature of Through-Bond Coupling 253 11.3.2 Other Through-Bond Coupling Units 256 11.4 Breaking a C-C Bond 258 Problems 265 References 269 Chapter 12 Polyenes and Conjugated Systems 272 12.1 Acyclic Polyenes 272 12.2 Hückel Theory 274 12.3 Cyclic Systems 277 12.4 Spin Polarization 285 12.5 Low- versus High-Spin States in Polyenes 289 12.6 Cross-Conjugated Polyenes 291 12.7 Perturbations of Cyclic Systems 294 12.8 Conjugation in Three Dimensions 303 Problems 306 References 310 Chapter 13 Solids 313 13.1 Energy Bands 313 13.2 Distortions in One-Dimensional Systems 328 13.3 Other One-Dimensional Systems 334 13.4 Two- and Three-Dimensional Systems 339 13.5 Electron Counting and Structure 350 13.6 High-Spin and Low-Spin Considerations 353 Problems 353 References 357 Chapter 14 Hypervalent Molecules 359 14.1 Orbitals of Octahedrally Based Molecules 359 14.2 Solid-State Hypervalent Compounds 373 14.3 Geometries of Hypervalent Molecules 383 Problems 392 References 399 Chapter 15 Transition Metal Complexes: A Starting Point at the Octahedron 401 15.1 Introduction 401 15.2 Octahedral ML6 402 15.3
-Effects in an Octahedron 406 15.4 Distortions from an Octahedral Geometry 416 15.5 The Octahedron in the Solid State 423 Problems 431 References 434 Chapter 16 Square Planar, Tetrahedral ML 4 Complexes, and Electron Counting 436 16.1 Introduction 436 16.2 The Square Planar ML4 Molecule 436 16.3 Electron Counting 438 16.4 The Square Planar-Tetrahedral ML4 Interconversion 448 16.5 The Solid State 453 Problems 460 References 463 Chapter 17 Five Coordination 465 17.1 Introduction 465 17.2 The C4v M5 Fragment 466 17.3 Five Coordination 468 17.4 Molecules Built Up from ML5 Fragments 480 17.5 Pentacoordinate Nitrosyls 489 17.6 Square Pyramids in The Solid State 492 Problems 498 References 500 Chapter 18 The C2v ML3 Fragment 503 18.1 Introduction 503 18.2 The Orbitals of A C2v ML3 Fragment 503 18.3 ML3-Containing Metallacycles 511 18.4 Comparison of C2v ML3 and C4v ML5 Fragments 518 Problems 523 References 525 Chapter 19 The ML2 and ML4 Fragments 527 19.1 Development of the C2v ML4 Fragment Orbitals 527 19.2 The Fe(CO)4 Story 529 19.3 Olefin-ML 4 Complexes and M2 L8 Dimers 533 19.4 The C2v ML2 Fragment 537 19.5 Polyene-ML2 Complexes 539 19.6 Reductive Elimination and Oxidative Addition 552 Problems 561 References 566 Chapter 20 Complexes of ML3 , MCp and Cp2 M570 20.1 Derivation of Orbitals for a C3v ML3 Fragment 570 20.2 The CpM Fragment Orbitals 582 20.3 Cp2 M and Metallocenes 592 20.4 Cp2 MLn Complexes 595 Problems 607 References 613 Chapter 21 The Isolobal Analogy 616 21.1 Introduction 616 21.2 Generation of Isolobal Fragments 617 21.3 Caveats 621 21.4 Illustrations of the Isolobal Analogy 623 21.5 Reactions 634 21.6 Extensions 639 Problems 646 References 649 Chapter 22 Cluster Compounds 653 22.1 Types of Cluster Compounds 653 22.2 Cluster Orbitals 657 22.3 Wade's Rules 660 22.4 Violations 671 22.5 Extensions 677 Problems 681 References 687 Chapter 23 Chemistry on the Surface 691 23.1 Introduction 691 23.2 General Structural Considerations 693 23.3 General Considerations of Adsorption on Surfaces 696 23.4 Diatomics on a Surface 699 23.5 The Surface of Semiconductors 721 Problems 728 References 731 Chapter 24 Magnetic Properties 735 24.1 Introduction 735 24.2 The Magnetic Insulating State 736 24.2.1 Electronic Structures 736 24.2.2 Factors Affecting the Effective On-Site Repulsion 738 24.2.3 Effect of Spin Arrangement on the Band Gap 740 24.3 Properties Associated with the Magnetic Moment 741 24.3.1 The Magnetic Moment 741 24.3.2 Magnetization 743 24.3.3 Magnetic Susceptibility 743 24.3.4 Experimental Investigation of Magnetic Energy Levels 745 24.4 Symmetric Spin Exchange 745 24.4.1 Mapping Analysis for a Spin Dimer 745 24.4.2 Through-Space and Through-Bond Orbital Interactions Leading to Spin Exchange 748 24.4.3 Mapping Analysis Based on Broken-Symmetry States 751 24.5 Magnetic Structure 754 24.5.1 Spin Frustration and Noncollinear Spin Arrangement 754 24.5.2 Long-Range Antiferromagnetic Order 755 24.5.3 Ferromagnetic and Ferromagnetic-Like Transitions 759 24.5.4 Typical Cases Leading to Ferromagnetic Interaction 760 24.5.5 Short-Range Order 763 24.6 The Energy Gap in the Magnetic Energy Spectrum 763 24.6.1 Spin Gap and Field-Induced Magnetic Order 763 24.6.2 Magnetization Plateaus 765 24.7 Spin-Orbit Coupling 766 24.7.1 Spin Orientation 766 24.7.2 Single-Ion Anisotropy 770 24.7.3 Uniaxial Magnetism versus Jahn-Teller Instability 771 24.7.4 The Dzyaloshinskii-Moriya Interaction 774 24.7.5 Singlet-Triplet Mixing Under Spin-Orbit Coupling 777 24.8 What Appears versus What Is 778 24.8.1 Idle Spin in Cu3(OH)4SO4 778 24.8.2 The FM-AFM versus AFM-AFM Chain 779 24.8.3 Diamond Chains 780 24.8.4 Spin Gap Behavior of a Two-Dimensional Square Net 782 24.9 Model Hamiltonians Beyond the Level of Spin Exchange 785 24.10 Summary Remarks 785 Problems 786 References 789 Appendix I Perturbational Molecular Orbital Theory 793 Appendix II Some Common Group Tables 803 Appendix III Normal Modes for Some Common Structural Types 808 Index 813
Preface xi About the Authors xiii Chapter 1 Atomic and Molecular Orbitals 1 1.1 Introduction 1 1.2 Atomic Orbitals 1 1.3 Molecular Orbitals 7 Problems 13 References 14 Chapter 2 Concepts of Bonding and Orbital Interaction 15 2.1 Orbital Interaction Energy 15 2.1.1 Degenerate Interaction 16 2.1.2 Nondegenerate Interaction 18 2.2 Molecular Orbital Coefficients 20 2.2.1 Degenerate Interaction 21 2.2.2 Nondegenerate Interaction 22 2.3 The Two-Orbital Problem-Summary 24 2.4 Electron Density Distribution 26 Problems 31 References 31 Chapter 3 Perturbational Molecular Orbital Theory 32 3.1 Introduction 32 3.2 Intermolecular Perturbation 35 3.3 Linear H3, HF, and the Three-Orbital Problem 38 3.4 Degenerate Perturbation 43 Problems 45 References 46 Chapter 4 Symmetry 47 4.1 Introduction 47 4.2 Symmetry of Molecules 47 4.3 Representations of Groups 53 4.4 Symmetry Properties of Orbitals 59 4.5 Symmetry-Adapted Wavefunctions 62 4.6 Direct Products 65 4.7 Symmetry Properties, Integrals, and the Noncrossing Rule 67 4.8 Principles of Orbital Construction Using Symmetry Principles 69 4.9 Symmetry Properties of Molecular Vibrations 73 Problems 75 References 77 Chapter 5 Molecular Orbital Construction from Fragment Orbitals 78 5.1 Introduction 78 5.2 Triangular H3 78 5.3 Rectangular and Square Planar H4 82 5.4 Tetrahedral H4 84 5.5 Linear H4 86 5.6 Pentagonal H5 and Hexagonal H6 88 5.7 Orbitals of Cyclic Systems 91 Problems 94 References 96 Chapter 6 Molecular Orbitals of Diatomic Molecules and Electronegativity Perturbation 97 6.1 Introduction 97 6.2 Orbital Hybridization 98 6.3 Molecular Orbitals of Diatomic Molecules 99 6.4 Electronegativity Perturbation 105 6.5 Photoelectron Spectroscopy and Through-Bond Conjugation 112 Problems 118 References 122 Chapter 7 Molecular Orbitals and Geometrical Perturbation 123 7.1 Molecular Orbitals of AH2 123 7.2 Geometrical Perturbation 128 7.3 Walsh Diagrams 131 7.4 Jahn-Teller Distortions 134 7.4.1 First-Order Jahn-Teller Distortion 135 7.4.2 Second-Order Jahn-Teller Distortion 136 7.4.3 Three-Center Bonding 139 7.5 Bond Orbitals and Photoelectron Spectra Of AH2 Molecules 141 Problems 147 References 150 Chapter 8 State Wavefunctions and State Energies 151 8.1 Introduction 151 8.2 The Molecular Hamiltonian and State Wavefunctions 152 8.3 Fock Operator 154 8.4 State Energy 156 8.5 Excitation Energy 157 8.6 Ionization Potential and Electron Affinity 160 8.7 Electron Density Distribution and Magnitudes of Coulomb and Exchange Repulsions 160 8.8 Low versus High Spin States 162 8.9 Electron-Electron Repulsion and Charged Species 164 8.10 Configuration Interaction 165 8.11 Toward More Quantitative Treatments 170 8.12 The Density Functional Method 174 Problems 176 References 177 Chapter 9 Molecular Orbitals of Small Building Blocks 179 9.1 Introduction 179 9.2 The AH System 179 9.3 Shapes of AH3 Systems 182 9.4
-Bonding Effects of Ligands 190 9.5 The AH4 System 193 9.6 The AHn Series-Some Generalizations 198 Problems 201 References 202 Chapter 10 Molecules with Two Heavy Atoms 204 10.1 Introduction 204 10.2 A2 H6 Systems 204 10.3 12-Electron A2 H4 Systems 208 10.3.1 Sudden Polarization 211 10.3.2 Substituent Effects 214 10.3.3 Dimerization and Pyramidalization of AH 2 218 10.4 14-Electron AH2 BH2 Systems 220 10.5 AH3 BH2 Systems 223 10.6 AH3 BH Systems 232 Problems 234 References 238 Chapter 11 Orbital Interactions through Space and through Bonds 241 11.1 Introduction 241 11.2 In-Plane
orbitals of Small Rings 241 11.2.1 Cyclopropane 241 11.2.2 Cyclobutane 246 11.3 Through-Bond Interaction 253 11.3.1 The Nature of Through-Bond Coupling 253 11.3.2 Other Through-Bond Coupling Units 256 11.4 Breaking a C-C Bond 258 Problems 265 References 269 Chapter 12 Polyenes and Conjugated Systems 272 12.1 Acyclic Polyenes 272 12.2 Hückel Theory 274 12.3 Cyclic Systems 277 12.4 Spin Polarization 285 12.5 Low- versus High-Spin States in Polyenes 289 12.6 Cross-Conjugated Polyenes 291 12.7 Perturbations of Cyclic Systems 294 12.8 Conjugation in Three Dimensions 303 Problems 306 References 310 Chapter 13 Solids 313 13.1 Energy Bands 313 13.2 Distortions in One-Dimensional Systems 328 13.3 Other One-Dimensional Systems 334 13.4 Two- and Three-Dimensional Systems 339 13.5 Electron Counting and Structure 350 13.6 High-Spin and Low-Spin Considerations 353 Problems 353 References 357 Chapter 14 Hypervalent Molecules 359 14.1 Orbitals of Octahedrally Based Molecules 359 14.2 Solid-State Hypervalent Compounds 373 14.3 Geometries of Hypervalent Molecules 383 Problems 392 References 399 Chapter 15 Transition Metal Complexes: A Starting Point at the Octahedron 401 15.1 Introduction 401 15.2 Octahedral ML6 402 15.3
-Effects in an Octahedron 406 15.4 Distortions from an Octahedral Geometry 416 15.5 The Octahedron in the Solid State 423 Problems 431 References 434 Chapter 16 Square Planar, Tetrahedral ML 4 Complexes, and Electron Counting 436 16.1 Introduction 436 16.2 The Square Planar ML4 Molecule 436 16.3 Electron Counting 438 16.4 The Square Planar-Tetrahedral ML4 Interconversion 448 16.5 The Solid State 453 Problems 460 References 463 Chapter 17 Five Coordination 465 17.1 Introduction 465 17.2 The C4v M5 Fragment 466 17.3 Five Coordination 468 17.4 Molecules Built Up from ML5 Fragments 480 17.5 Pentacoordinate Nitrosyls 489 17.6 Square Pyramids in The Solid State 492 Problems 498 References 500 Chapter 18 The C2v ML3 Fragment 503 18.1 Introduction 503 18.2 The Orbitals of A C2v ML3 Fragment 503 18.3 ML3-Containing Metallacycles 511 18.4 Comparison of C2v ML3 and C4v ML5 Fragments 518 Problems 523 References 525 Chapter 19 The ML2 and ML4 Fragments 527 19.1 Development of the C2v ML4 Fragment Orbitals 527 19.2 The Fe(CO)4 Story 529 19.3 Olefin-ML 4 Complexes and M2 L8 Dimers 533 19.4 The C2v ML2 Fragment 537 19.5 Polyene-ML2 Complexes 539 19.6 Reductive Elimination and Oxidative Addition 552 Problems 561 References 566 Chapter 20 Complexes of ML3 , MCp and Cp2 M570 20.1 Derivation of Orbitals for a C3v ML3 Fragment 570 20.2 The CpM Fragment Orbitals 582 20.3 Cp2 M and Metallocenes 592 20.4 Cp2 MLn Complexes 595 Problems 607 References 613 Chapter 21 The Isolobal Analogy 616 21.1 Introduction 616 21.2 Generation of Isolobal Fragments 617 21.3 Caveats 621 21.4 Illustrations of the Isolobal Analogy 623 21.5 Reactions 634 21.6 Extensions 639 Problems 646 References 649 Chapter 22 Cluster Compounds 653 22.1 Types of Cluster Compounds 653 22.2 Cluster Orbitals 657 22.3 Wade's Rules 660 22.4 Violations 671 22.5 Extensions 677 Problems 681 References 687 Chapter 23 Chemistry on the Surface 691 23.1 Introduction 691 23.2 General Structural Considerations 693 23.3 General Considerations of Adsorption on Surfaces 696 23.4 Diatomics on a Surface 699 23.5 The Surface of Semiconductors 721 Problems 728 References 731 Chapter 24 Magnetic Properties 735 24.1 Introduction 735 24.2 The Magnetic Insulating State 736 24.2.1 Electronic Structures 736 24.2.2 Factors Affecting the Effective On-Site Repulsion 738 24.2.3 Effect of Spin Arrangement on the Band Gap 740 24.3 Properties Associated with the Magnetic Moment 741 24.3.1 The Magnetic Moment 741 24.3.2 Magnetization 743 24.3.3 Magnetic Susceptibility 743 24.3.4 Experimental Investigation of Magnetic Energy Levels 745 24.4 Symmetric Spin Exchange 745 24.4.1 Mapping Analysis for a Spin Dimer 745 24.4.2 Through-Space and Through-Bond Orbital Interactions Leading to Spin Exchange 748 24.4.3 Mapping Analysis Based on Broken-Symmetry States 751 24.5 Magnetic Structure 754 24.5.1 Spin Frustration and Noncollinear Spin Arrangement 754 24.5.2 Long-Range Antiferromagnetic Order 755 24.5.3 Ferromagnetic and Ferromagnetic-Like Transitions 759 24.5.4 Typical Cases Leading to Ferromagnetic Interaction 760 24.5.5 Short-Range Order 763 24.6 The Energy Gap in the Magnetic Energy Spectrum 763 24.6.1 Spin Gap and Field-Induced Magnetic Order 763 24.6.2 Magnetization Plateaus 765 24.7 Spin-Orbit Coupling 766 24.7.1 Spin Orientation 766 24.7.2 Single-Ion Anisotropy 770 24.7.3 Uniaxial Magnetism versus Jahn-Teller Instability 771 24.7.4 The Dzyaloshinskii-Moriya Interaction 774 24.7.5 Singlet-Triplet Mixing Under Spin-Orbit Coupling 777 24.8 What Appears versus What Is 778 24.8.1 Idle Spin in Cu3(OH)4SO4 778 24.8.2 The FM-AFM versus AFM-AFM Chain 779 24.8.3 Diamond Chains 780 24.8.4 Spin Gap Behavior of a Two-Dimensional Square Net 782 24.9 Model Hamiltonians Beyond the Level of Spin Exchange 785 24.10 Summary Remarks 785 Problems 786 References 789 Appendix I Perturbational Molecular Orbital Theory 793 Appendix II Some Common Group Tables 803 Appendix III Normal Modes for Some Common Structural Types 808 Index 813
-Bonding Effects of Ligands 190 9.5 The AH4 System 193 9.6 The AHn Series-Some Generalizations 198 Problems 201 References 202 Chapter 10 Molecules with Two Heavy Atoms 204 10.1 Introduction 204 10.2 A2 H6 Systems 204 10.3 12-Electron A2 H4 Systems 208 10.3.1 Sudden Polarization 211 10.3.2 Substituent Effects 214 10.3.3 Dimerization and Pyramidalization of AH 2 218 10.4 14-Electron AH2 BH2 Systems 220 10.5 AH3 BH2 Systems 223 10.6 AH3 BH Systems 232 Problems 234 References 238 Chapter 11 Orbital Interactions through Space and through Bonds 241 11.1 Introduction 241 11.2 In-Plane
orbitals of Small Rings 241 11.2.1 Cyclopropane 241 11.2.2 Cyclobutane 246 11.3 Through-Bond Interaction 253 11.3.1 The Nature of Through-Bond Coupling 253 11.3.2 Other Through-Bond Coupling Units 256 11.4 Breaking a C-C Bond 258 Problems 265 References 269 Chapter 12 Polyenes and Conjugated Systems 272 12.1 Acyclic Polyenes 272 12.2 Hückel Theory 274 12.3 Cyclic Systems 277 12.4 Spin Polarization 285 12.5 Low- versus High-Spin States in Polyenes 289 12.6 Cross-Conjugated Polyenes 291 12.7 Perturbations of Cyclic Systems 294 12.8 Conjugation in Three Dimensions 303 Problems 306 References 310 Chapter 13 Solids 313 13.1 Energy Bands 313 13.2 Distortions in One-Dimensional Systems 328 13.3 Other One-Dimensional Systems 334 13.4 Two- and Three-Dimensional Systems 339 13.5 Electron Counting and Structure 350 13.6 High-Spin and Low-Spin Considerations 353 Problems 353 References 357 Chapter 14 Hypervalent Molecules 359 14.1 Orbitals of Octahedrally Based Molecules 359 14.2 Solid-State Hypervalent Compounds 373 14.3 Geometries of Hypervalent Molecules 383 Problems 392 References 399 Chapter 15 Transition Metal Complexes: A Starting Point at the Octahedron 401 15.1 Introduction 401 15.2 Octahedral ML6 402 15.3
-Effects in an Octahedron 406 15.4 Distortions from an Octahedral Geometry 416 15.5 The Octahedron in the Solid State 423 Problems 431 References 434 Chapter 16 Square Planar, Tetrahedral ML 4 Complexes, and Electron Counting 436 16.1 Introduction 436 16.2 The Square Planar ML4 Molecule 436 16.3 Electron Counting 438 16.4 The Square Planar-Tetrahedral ML4 Interconversion 448 16.5 The Solid State 453 Problems 460 References 463 Chapter 17 Five Coordination 465 17.1 Introduction 465 17.2 The C4v M5 Fragment 466 17.3 Five Coordination 468 17.4 Molecules Built Up from ML5 Fragments 480 17.5 Pentacoordinate Nitrosyls 489 17.6 Square Pyramids in The Solid State 492 Problems 498 References 500 Chapter 18 The C2v ML3 Fragment 503 18.1 Introduction 503 18.2 The Orbitals of A C2v ML3 Fragment 503 18.3 ML3-Containing Metallacycles 511 18.4 Comparison of C2v ML3 and C4v ML5 Fragments 518 Problems 523 References 525 Chapter 19 The ML2 and ML4 Fragments 527 19.1 Development of the C2v ML4 Fragment Orbitals 527 19.2 The Fe(CO)4 Story 529 19.3 Olefin-ML 4 Complexes and M2 L8 Dimers 533 19.4 The C2v ML2 Fragment 537 19.5 Polyene-ML2 Complexes 539 19.6 Reductive Elimination and Oxidative Addition 552 Problems 561 References 566 Chapter 20 Complexes of ML3 , MCp and Cp2 M570 20.1 Derivation of Orbitals for a C3v ML3 Fragment 570 20.2 The CpM Fragment Orbitals 582 20.3 Cp2 M and Metallocenes 592 20.4 Cp2 MLn Complexes 595 Problems 607 References 613 Chapter 21 The Isolobal Analogy 616 21.1 Introduction 616 21.2 Generation of Isolobal Fragments 617 21.3 Caveats 621 21.4 Illustrations of the Isolobal Analogy 623 21.5 Reactions 634 21.6 Extensions 639 Problems 646 References 649 Chapter 22 Cluster Compounds 653 22.1 Types of Cluster Compounds 653 22.2 Cluster Orbitals 657 22.3 Wade's Rules 660 22.4 Violations 671 22.5 Extensions 677 Problems 681 References 687 Chapter 23 Chemistry on the Surface 691 23.1 Introduction 691 23.2 General Structural Considerations 693 23.3 General Considerations of Adsorption on Surfaces 696 23.4 Diatomics on a Surface 699 23.5 The Surface of Semiconductors 721 Problems 728 References 731 Chapter 24 Magnetic Properties 735 24.1 Introduction 735 24.2 The Magnetic Insulating State 736 24.2.1 Electronic Structures 736 24.2.2 Factors Affecting the Effective On-Site Repulsion 738 24.2.3 Effect of Spin Arrangement on the Band Gap 740 24.3 Properties Associated with the Magnetic Moment 741 24.3.1 The Magnetic Moment 741 24.3.2 Magnetization 743 24.3.3 Magnetic Susceptibility 743 24.3.4 Experimental Investigation of Magnetic Energy Levels 745 24.4 Symmetric Spin Exchange 745 24.4.1 Mapping Analysis for a Spin Dimer 745 24.4.2 Through-Space and Through-Bond Orbital Interactions Leading to Spin Exchange 748 24.4.3 Mapping Analysis Based on Broken-Symmetry States 751 24.5 Magnetic Structure 754 24.5.1 Spin Frustration and Noncollinear Spin Arrangement 754 24.5.2 Long-Range Antiferromagnetic Order 755 24.5.3 Ferromagnetic and Ferromagnetic-Like Transitions 759 24.5.4 Typical Cases Leading to Ferromagnetic Interaction 760 24.5.5 Short-Range Order 763 24.6 The Energy Gap in the Magnetic Energy Spectrum 763 24.6.1 Spin Gap and Field-Induced Magnetic Order 763 24.6.2 Magnetization Plateaus 765 24.7 Spin-Orbit Coupling 766 24.7.1 Spin Orientation 766 24.7.2 Single-Ion Anisotropy 770 24.7.3 Uniaxial Magnetism versus Jahn-Teller Instability 771 24.7.4 The Dzyaloshinskii-Moriya Interaction 774 24.7.5 Singlet-Triplet Mixing Under Spin-Orbit Coupling 777 24.8 What Appears versus What Is 778 24.8.1 Idle Spin in Cu3(OH)4SO4 778 24.8.2 The FM-AFM versus AFM-AFM Chain 779 24.8.3 Diamond Chains 780 24.8.4 Spin Gap Behavior of a Two-Dimensional Square Net 782 24.9 Model Hamiltonians Beyond the Level of Spin Exchange 785 24.10 Summary Remarks 785 Problems 786 References 789 Appendix I Perturbational Molecular Orbital Theory 793 Appendix II Some Common Group Tables 803 Appendix III Normal Modes for Some Common Structural Types 808 Index 813