Orthogonal polynomials are a family of polynomials, wherein any two different polynomials in the sequence are orthogonal to each other under some inner product. Classical orthogonal polynomials, Hermite polynomials, Laguerre polynomials, Jacobi polynomials, and Gegenbauer polynomials are a few examples of orthogonal polynomials. These polynomials are used for least square approximations of a function, difference equations, and Fourier series. Another major application of orthogonal polynomials is error-correcting code and sphere packing. Orthogonal polynomials and special functions are useful mathematical functions, which have applications in various fields such as mathematical physics, statistics and probability, and engineering. These can be used to explain many physical and chemical phenomena. This book traces the recent studies in orthogonal polynomials and special functions. A number of latest researches have been included to keep the readers updated with the latest concepts in this area of study. With state-of-the-art inputs by acclaimed experts of mathematics, this book targets students and professionals.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.