39,90 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Con l'avanzamento delle tecnologie nell'era moderna, la quantità di dati che emerge da varie fonti come i siti web online, l'Internet delle cose, l'e-commerce e così via, continua ad aumentare ad un ritmo sempre più elevato. I dati disponibili sono troppi per un utente comune. Il sistema di raccomandazione si sforza quindi di fornire le informazioni giuste all'utente giusto, a portata di mano, e di semplificare le cose per gli utenti. La misura della somiglianza è considerata un passo importante per determinare l'accuratezza del sistema di raccomandazione. Un filtro collaborativo classico…mehr

Produktbeschreibung
Con l'avanzamento delle tecnologie nell'era moderna, la quantità di dati che emerge da varie fonti come i siti web online, l'Internet delle cose, l'e-commerce e così via, continua ad aumentare ad un ritmo sempre più elevato. I dati disponibili sono troppi per un utente comune. Il sistema di raccomandazione si sforza quindi di fornire le informazioni giuste all'utente giusto, a portata di mano, e di semplificare le cose per gli utenti. La misura della somiglianza è considerata un passo importante per determinare l'accuratezza del sistema di raccomandazione. Un filtro collaborativo classico viene implementato utilizzando il coefficiente di correlazione di Pearson o la somiglianza di Cosine, che hanno i loro pregi e difetti. Proponiamo una misura di somiglianza migliorata applicando la metodologia basata sugli insiemi alle misure di somiglianza di base e analizziamo l'impatto di queste varie misure di somiglianza migliorate, come il coseno basato sugli insiemi, il coefficiente di correlazione di Pearson basato sugli insiemi, Spearman basato sugli insiemi e Kendall basato sugli insiemi sui sistemi di raccomandazione basati sul filtraggio collaborativo degli utenti. È stato osservato che le misure di somiglianza migliorate ottenute con le metodologie basate sugli insiemi sono più significative delle misure di base utilizzando il test di Wilcoxon.
Autorenporträt
A Sra. K. V. Uma trabalha como professora assistente no Departamento de Tecnologia da Informação, Thiagarajar College of Engineering, Madurai, Tamil Nadu, Índia. Ela está a fazer investigação na área de Data Mining. Publicou mais de 20 artigos em revistas e conferências na área de Data Mining, especificamente na área de Classificação.