43,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
22 °P sammeln
  • Broschiertes Buch

One of the important questions related to any integral transform on a manifold M or on a homogeneous space G/K is the description of the image of a given space of functions. If M=G/K, where (G,K) is a Gelfand pair, then harmonic analysis on M is closely related to the representations of G and the direct integral decomposition of the space of square-integrable functions on M into irreducible representations of G. The n-dimensional Euclidean space can be realized as the quotient of the orientation preserving Euclidean motion group E(n) by the special orthogonal group SO(n). The pair (E(n),…mehr

Produktbeschreibung
One of the important questions related to any integral transform on a manifold M or on a homogeneous space G/K is the description of the image of a given space of functions. If M=G/K, where (G,K) is a Gelfand pair, then harmonic analysis on M is closely related to the representations of G and the direct integral decomposition of the space of square-integrable functions on M into irreducible representations of G. The n-dimensional Euclidean space can be realized as the quotient of the orientation preserving Euclidean motion group E(n) by the special orthogonal group SO(n). The pair (E(n), SO(n)) is a Gelfand pair. Hence this realization of the n-dimensional Euclidean space comes with its own natural Fourier transform derived from the representation theory of E(n). The representations of E(n) that are in the support of the Plancherel measure for the space of square-integrable functions on n-dimensional Euclidean space are parameterized by positive reals. We describe the image of smooth compactly supported functions under the Fourier transform with respect to the spectral parameter. Then we discuss an extension of our description to projective limits of corresponding function spaces.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Susanna Dann is a postdoctoral researcher at the University of Missouri, Columbia. Starting September 2014 she will be an assistant professor at the Technical University Vienna, Austria. She obtained her B.Sc. from the University of Applied Sciences Stuttgart, Germany in 2004 and her Ph.D. from LSU, Baton Rouge in 2011.