This book presents Pd- and Ni-catalyzed transformations generating functionalized heterocycles. Transition metal catalysis is at the forefront of synthetic organic chemistry since it offers new and powerful methods to forge carbon-carbon bonds in high atom- and step-economy.
In Chapter 1, the author describes a Pd- and Ni-catalyzed cycloisomerization of aryl iodides to alkyl iodides, known as carboiodination. In the context of the Pd-catalyzed variant, the chapter explores the production of enantioenriched carboxamides through diastereoselective Pd-catalyzed carboiodination. It then discusses Ni-catalyzed reactions to generate oxindoles and an enantioselective variant employing a dual ligand system.
Chapter 2 introduces readers to a Pd-catalyzed diastereoselective anion-capture cascade. It also examines diastereoselective Pd-catalyzed aryl cyanation to synthesize alkyl nitriles, a method that generates high yields of borylated chromans as a single diastereomer, andhighlights its synthetic utility.
Lastly, Chapter 3 presents a Pd-catalyzed domino process harnessing carbopalladation, C-H activation and pi-system insertion (benzynes and alkynes) to generate spirocycles. It also describes the mechanistic studies performed on these reactions.
In Chapter 1, the author describes a Pd- and Ni-catalyzed cycloisomerization of aryl iodides to alkyl iodides, known as carboiodination. In the context of the Pd-catalyzed variant, the chapter explores the production of enantioenriched carboxamides through diastereoselective Pd-catalyzed carboiodination. It then discusses Ni-catalyzed reactions to generate oxindoles and an enantioselective variant employing a dual ligand system.
Chapter 2 introduces readers to a Pd-catalyzed diastereoselective anion-capture cascade. It also examines diastereoselective Pd-catalyzed aryl cyanation to synthesize alkyl nitriles, a method that generates high yields of borylated chromans as a single diastereomer, andhighlights its synthetic utility.
Lastly, Chapter 3 presents a Pd-catalyzed domino process harnessing carbopalladation, C-H activation and pi-system insertion (benzynes and alkynes) to generate spirocycles. It also describes the mechanistic studies performed on these reactions.