This is one of the first parallel computing books to focus exclusively on parallel data structures, algorithms, software tools, and applications in data science. The book prepares readers to write effective parallel code in various languages and learn more about different R packages and other tools. It covers the classic "n observations, p variables" matrix format and common data structures. Many examples illustrate the range of issues encountered in parallel programming.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
"From my reading of the book, Matloff achieves his goals, and in doing so he has provided a volume that will be immensely useful to a very wide audience. I can see it being used as a reference by data analysts, statisticians, engineers, econometricians, biometricians, etc. This would apply to both established researchers and graduate students. This book provides exactly the sort of information that this audience is looking for, and it is presented in a very accessible and friendly manner."
-Econometrics Beat: Dave Giles' Blog, July 2015
"The author has correctly recognized that there is a pressing need for a thorough, but readable guide to parallel computing-one that can be used by researchers and students in a wide range of disciplines. In my view, this book will meet that need. ... For me and colleagues in my field, I would see this as a 'must-have' reference book-one that would be well thumbed!"
-David E. Giles, University of Victoria
"This is a book that I will use, both as a reference and for instruction. The examples are poignant and the presentation moves the reader directly from concept to working code."
-Michael Kane, Yale University
"Matloff's Parallel Computing for Data Science: With Examples in R, C++ and CUDA can be recommended to colleagues and students alike, and the author is to be congratulated for taming a difficult and exhaustive body of topics via a very accessible primer."
-Dirk Eddelbuettel, Debian and R Projects
-Econometrics Beat: Dave Giles' Blog, July 2015
"The author has correctly recognized that there is a pressing need for a thorough, but readable guide to parallel computing-one that can be used by researchers and students in a wide range of disciplines. In my view, this book will meet that need. ... For me and colleagues in my field, I would see this as a 'must-have' reference book-one that would be well thumbed!"
-David E. Giles, University of Victoria
"This is a book that I will use, both as a reference and for instruction. The examples are poignant and the presentation moves the reader directly from concept to working code."
-Michael Kane, Yale University
"Matloff's Parallel Computing for Data Science: With Examples in R, C++ and CUDA can be recommended to colleagues and students alike, and the author is to be congratulated for taming a difficult and exhaustive body of topics via a very accessible primer."
-Dirk Eddelbuettel, Debian and R Projects