Computational fluid dynamics (CFD) is one of the most emerging fields of fluid mechanics used to analyze fluid flow situation. This analysis is based on simulations carried out on computing machines. For complex configurations, the grid points are so large that the computational time required to obtain the results are very high. Parallel computing is adopted to reduce the computational time of CFD by utilizing the available resource of computing. Parallel computing tools like OpenMP, MPI, CUDA, combination of these and few others are used to achieve parallelization of CFD software. This book provides a comprehensive state of the art review of important CFD areas and parallelization strategies for the related software. Issues related to computational time complexities and parallelization of CFD software are highlighted. Benefits and issues of using parallel computing tools for parallelization of CFD software are briefed. Open areas of CFD where parallelization is not much attempted are identified and parallel computing tools which can be useful for parallelization of CFD software are spotlighted. Suggestions for future work in parallel computing of CFD software are also provided.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.