Cohen
Parameter Estimation in Reliability and Life Span Models
Cohen
Parameter Estimation in Reliability and Life Span Models
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Offers an applications-oriented treatment of parameter estimation from both complete and censored samples; contains notations, simplified formats for estimates, graphical techniques, and numerous tables and charts allowing users to calculate estimates and analyze sample data quickly and easily. Anno
Andere Kunden interessierten sich auch für
- A. Clifford CohenParameter Estimation in Reliability and Life Span Models66,99 €
- Bin JiaGrid-based Nonlinear Estimation and Its Applications78,99 €
- Bin JiaGrid-based Nonlinear Estimation and Its Applications244,99 €
- Robert J. ElliottHidden Markov Models125,99 €
- Frederic Y M WanSPATIAL DYN MODELS LIFE SCI & ROLE FEEDBACK ROBUST DEVELOP177,99 €
- Robert J. ElliottHidden Markov Models189,99 €
- Steven R BellThe Cauchy Transform, Potential Theory and Conformal Mapping164,99 €
-
-
-
Offers an applications-oriented treatment of parameter estimation from both complete and censored samples; contains notations, simplified formats for estimates, graphical techniques, and numerous tables and charts allowing users to calculate estimates and analyze sample data quickly and easily. Anno
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: CRC Press
- Seitenzahl: 420
- Erscheinungstermin: 13. September 1988
- Englisch
- Abmessung: 235mm x 157mm x 29mm
- Gewicht: 829g
- ISBN-13: 9780824779801
- ISBN-10: 0824779800
- Artikelnr.: 21063570
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: CRC Press
- Seitenzahl: 420
- Erscheinungstermin: 13. September 1988
- Englisch
- Abmessung: 235mm x 157mm x 29mm
- Gewicht: 829g
- ISBN-13: 9780824779801
- ISBN-10: 0824779800
- Artikelnr.: 21063570
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Cohen\,
Contents Preface List of Illustrations List of Tables List of Programs
1.INTRODUCTION. Introductory Remarks. An Overview of Skewed Distributions.
Parameter Estimation. Some Comparisons.2. CONCEPTS FOR THE ANALYSIS OF
RELIABILITY AND LIFE DISTRIBUTION DATA. Life Distributions and Reliability
Discrete Models. 3.THE WEIBULL, EXPONENTIAL, AND EXTREME VALUE
DISTRIBUTIONS. Background. Characteristics of the Weibull Distribution.
Maximum Likelihood Estimation. Moment Estimators. Modified Moment
Estimators. Wycoff, Bain, Engelhardt, and Zanakis Estimators. Special
Cases: Shape Parameter o Known. Errors of Estimates. The Exponential
Distribution. The Extreme Value Distribution. Illustrative Examples.
Reflections. 4. LOGNORMAL DISTRIBUTION Introduction. Some Fundamentals.
Moment Estimators. Maximum Likelihood Estimators. Asymptotic Variances and
Covariances. Modified Moment Estimators. Illustrative Examples.
Reflections. 5. THE INVERSE GAUSSIAN DISTRIBUTION. Background. The
Probability Density Function. Maximum Likelihood Estimation. Asymptotic
Variances and Covariances. Moment Estimators. Modified Moment Estimators.
Illustrative Examples. Reflections. 6. THE GAMMA DISTRIBUTION. Background.
The Density Function and Its Characteristics.Moment Estimators. Maximum
Likelihood Estimators. Asymptotic Variances and Covariances. Modified
Moment Estimators. Illustrative Examples. Reflections. 7. CENSORED SAMPLING
IN THE EXPONENTIAL AND WEIBULL DISTRIBUTIONS. Introduction. Progressively
Censored Samples. Censored Samples from the Exponential Distribution.
Censored Samples from the Weibull Distribution. The Hazard Plot. Estimate
Variances and Covariances. An Illustrative Example. 8. CENSORED AND
TRUNCATED SAMPLES FROM THENORMAL AND THE LOGNORMAL DISTRIBUTIONS.
Introductory Remarks. Maximum Likelihood Estimation Modified Maximum
Likelihood Estimators for Lognormal Parameters Based on Censored Samples.
Maximum Likelihood Estimation in the Normal Distribution. An Illustrative
Example from a Lognormal Distribution. CENSORED SAMPLING IN THE INVERSE
GAUSSIAN AND GAMMA DISTRIBUTIONS. Introduction. Censored Sampling in the
Inverse Gaussian Distribution. A Pseudocomplete Sample Technique. Censored
Sampling in the Gamma Distribution. An Illustrative Example. 10. THE
RAYLEIGH DISTRIBUTION. Introduction. Maximum Likelihood and Moment
Estimation in the p-Dimensional Distribution. Special Cases. Complete
Sample Estimators When p = 1, 2, and 3. Two-Parameter Rayleigh
Distribution. Estimation in the Two-Parameter Rayleigh Distribution.
Truncated Samples. Censored Samples. Reliability of Estimates. Illustrative
Examples. Parameter Estimation in the Two-Parameter Rayleigh Distribution
of Dimension 2, When Samples Are Censored. Some Concluding Remarks 11. THE
PARETO DISTRIBUTION. Introduction. Some Fundamentals. Parameter Estimation
from Complete Samples. Parameter Estimation from Truncated Censored
Samples. Reliability of Estimates. An Illustrative Example 12. THE
GENERALIZED GAMMA DISTRIBUTION. Introduction. Parameter Estimation in the
Three-Parameter Distribution. The Four-Parameter Distribution. Estimate
Variances and Covariances. Simplified Computational Procedures for the
Modified Moment Estimators. Illustrative Examples Censored Samples.
Asymptotic Variances and Covariances of Maximum Likelihood Estimators. An
Illustrative Example Some Comments and Recommendations. APPENDIX A. SOME
CONCLUDING REMARKS. FURTHER COMPARISONS. TABLES OF CUMULATIVE DISTRIBUTION
FUNCTIONS. COMPUTER PROGRAMS. Glossary. Bibliography. Index
1.INTRODUCTION. Introductory Remarks. An Overview of Skewed Distributions.
Parameter Estimation. Some Comparisons.2. CONCEPTS FOR THE ANALYSIS OF
RELIABILITY AND LIFE DISTRIBUTION DATA. Life Distributions and Reliability
Discrete Models. 3.THE WEIBULL, EXPONENTIAL, AND EXTREME VALUE
DISTRIBUTIONS. Background. Characteristics of the Weibull Distribution.
Maximum Likelihood Estimation. Moment Estimators. Modified Moment
Estimators. Wycoff, Bain, Engelhardt, and Zanakis Estimators. Special
Cases: Shape Parameter o Known. Errors of Estimates. The Exponential
Distribution. The Extreme Value Distribution. Illustrative Examples.
Reflections. 4. LOGNORMAL DISTRIBUTION Introduction. Some Fundamentals.
Moment Estimators. Maximum Likelihood Estimators. Asymptotic Variances and
Covariances. Modified Moment Estimators. Illustrative Examples.
Reflections. 5. THE INVERSE GAUSSIAN DISTRIBUTION. Background. The
Probability Density Function. Maximum Likelihood Estimation. Asymptotic
Variances and Covariances. Moment Estimators. Modified Moment Estimators.
Illustrative Examples. Reflections. 6. THE GAMMA DISTRIBUTION. Background.
The Density Function and Its Characteristics.Moment Estimators. Maximum
Likelihood Estimators. Asymptotic Variances and Covariances. Modified
Moment Estimators. Illustrative Examples. Reflections. 7. CENSORED SAMPLING
IN THE EXPONENTIAL AND WEIBULL DISTRIBUTIONS. Introduction. Progressively
Censored Samples. Censored Samples from the Exponential Distribution.
Censored Samples from the Weibull Distribution. The Hazard Plot. Estimate
Variances and Covariances. An Illustrative Example. 8. CENSORED AND
TRUNCATED SAMPLES FROM THENORMAL AND THE LOGNORMAL DISTRIBUTIONS.
Introductory Remarks. Maximum Likelihood Estimation Modified Maximum
Likelihood Estimators for Lognormal Parameters Based on Censored Samples.
Maximum Likelihood Estimation in the Normal Distribution. An Illustrative
Example from a Lognormal Distribution. CENSORED SAMPLING IN THE INVERSE
GAUSSIAN AND GAMMA DISTRIBUTIONS. Introduction. Censored Sampling in the
Inverse Gaussian Distribution. A Pseudocomplete Sample Technique. Censored
Sampling in the Gamma Distribution. An Illustrative Example. 10. THE
RAYLEIGH DISTRIBUTION. Introduction. Maximum Likelihood and Moment
Estimation in the p-Dimensional Distribution. Special Cases. Complete
Sample Estimators When p = 1, 2, and 3. Two-Parameter Rayleigh
Distribution. Estimation in the Two-Parameter Rayleigh Distribution.
Truncated Samples. Censored Samples. Reliability of Estimates. Illustrative
Examples. Parameter Estimation in the Two-Parameter Rayleigh Distribution
of Dimension 2, When Samples Are Censored. Some Concluding Remarks 11. THE
PARETO DISTRIBUTION. Introduction. Some Fundamentals. Parameter Estimation
from Complete Samples. Parameter Estimation from Truncated Censored
Samples. Reliability of Estimates. An Illustrative Example 12. THE
GENERALIZED GAMMA DISTRIBUTION. Introduction. Parameter Estimation in the
Three-Parameter Distribution. The Four-Parameter Distribution. Estimate
Variances and Covariances. Simplified Computational Procedures for the
Modified Moment Estimators. Illustrative Examples Censored Samples.
Asymptotic Variances and Covariances of Maximum Likelihood Estimators. An
Illustrative Example Some Comments and Recommendations. APPENDIX A. SOME
CONCLUDING REMARKS. FURTHER COMPARISONS. TABLES OF CUMULATIVE DISTRIBUTION
FUNCTIONS. COMPUTER PROGRAMS. Glossary. Bibliography. Index
Contents Preface List of Illustrations List of Tables List of Programs
1.INTRODUCTION. Introductory Remarks. An Overview of Skewed Distributions.
Parameter Estimation. Some Comparisons.2. CONCEPTS FOR THE ANALYSIS OF
RELIABILITY AND LIFE DISTRIBUTION DATA. Life Distributions and Reliability
Discrete Models. 3.THE WEIBULL, EXPONENTIAL, AND EXTREME VALUE
DISTRIBUTIONS. Background. Characteristics of the Weibull Distribution.
Maximum Likelihood Estimation. Moment Estimators. Modified Moment
Estimators. Wycoff, Bain, Engelhardt, and Zanakis Estimators. Special
Cases: Shape Parameter o Known. Errors of Estimates. The Exponential
Distribution. The Extreme Value Distribution. Illustrative Examples.
Reflections. 4. LOGNORMAL DISTRIBUTION Introduction. Some Fundamentals.
Moment Estimators. Maximum Likelihood Estimators. Asymptotic Variances and
Covariances. Modified Moment Estimators. Illustrative Examples.
Reflections. 5. THE INVERSE GAUSSIAN DISTRIBUTION. Background. The
Probability Density Function. Maximum Likelihood Estimation. Asymptotic
Variances and Covariances. Moment Estimators. Modified Moment Estimators.
Illustrative Examples. Reflections. 6. THE GAMMA DISTRIBUTION. Background.
The Density Function and Its Characteristics.Moment Estimators. Maximum
Likelihood Estimators. Asymptotic Variances and Covariances. Modified
Moment Estimators. Illustrative Examples. Reflections. 7. CENSORED SAMPLING
IN THE EXPONENTIAL AND WEIBULL DISTRIBUTIONS. Introduction. Progressively
Censored Samples. Censored Samples from the Exponential Distribution.
Censored Samples from the Weibull Distribution. The Hazard Plot. Estimate
Variances and Covariances. An Illustrative Example. 8. CENSORED AND
TRUNCATED SAMPLES FROM THENORMAL AND THE LOGNORMAL DISTRIBUTIONS.
Introductory Remarks. Maximum Likelihood Estimation Modified Maximum
Likelihood Estimators for Lognormal Parameters Based on Censored Samples.
Maximum Likelihood Estimation in the Normal Distribution. An Illustrative
Example from a Lognormal Distribution. CENSORED SAMPLING IN THE INVERSE
GAUSSIAN AND GAMMA DISTRIBUTIONS. Introduction. Censored Sampling in the
Inverse Gaussian Distribution. A Pseudocomplete Sample Technique. Censored
Sampling in the Gamma Distribution. An Illustrative Example. 10. THE
RAYLEIGH DISTRIBUTION. Introduction. Maximum Likelihood and Moment
Estimation in the p-Dimensional Distribution. Special Cases. Complete
Sample Estimators When p = 1, 2, and 3. Two-Parameter Rayleigh
Distribution. Estimation in the Two-Parameter Rayleigh Distribution.
Truncated Samples. Censored Samples. Reliability of Estimates. Illustrative
Examples. Parameter Estimation in the Two-Parameter Rayleigh Distribution
of Dimension 2, When Samples Are Censored. Some Concluding Remarks 11. THE
PARETO DISTRIBUTION. Introduction. Some Fundamentals. Parameter Estimation
from Complete Samples. Parameter Estimation from Truncated Censored
Samples. Reliability of Estimates. An Illustrative Example 12. THE
GENERALIZED GAMMA DISTRIBUTION. Introduction. Parameter Estimation in the
Three-Parameter Distribution. The Four-Parameter Distribution. Estimate
Variances and Covariances. Simplified Computational Procedures for the
Modified Moment Estimators. Illustrative Examples Censored Samples.
Asymptotic Variances and Covariances of Maximum Likelihood Estimators. An
Illustrative Example Some Comments and Recommendations. APPENDIX A. SOME
CONCLUDING REMARKS. FURTHER COMPARISONS. TABLES OF CUMULATIVE DISTRIBUTION
FUNCTIONS. COMPUTER PROGRAMS. Glossary. Bibliography. Index
1.INTRODUCTION. Introductory Remarks. An Overview of Skewed Distributions.
Parameter Estimation. Some Comparisons.2. CONCEPTS FOR THE ANALYSIS OF
RELIABILITY AND LIFE DISTRIBUTION DATA. Life Distributions and Reliability
Discrete Models. 3.THE WEIBULL, EXPONENTIAL, AND EXTREME VALUE
DISTRIBUTIONS. Background. Characteristics of the Weibull Distribution.
Maximum Likelihood Estimation. Moment Estimators. Modified Moment
Estimators. Wycoff, Bain, Engelhardt, and Zanakis Estimators. Special
Cases: Shape Parameter o Known. Errors of Estimates. The Exponential
Distribution. The Extreme Value Distribution. Illustrative Examples.
Reflections. 4. LOGNORMAL DISTRIBUTION Introduction. Some Fundamentals.
Moment Estimators. Maximum Likelihood Estimators. Asymptotic Variances and
Covariances. Modified Moment Estimators. Illustrative Examples.
Reflections. 5. THE INVERSE GAUSSIAN DISTRIBUTION. Background. The
Probability Density Function. Maximum Likelihood Estimation. Asymptotic
Variances and Covariances. Moment Estimators. Modified Moment Estimators.
Illustrative Examples. Reflections. 6. THE GAMMA DISTRIBUTION. Background.
The Density Function and Its Characteristics.Moment Estimators. Maximum
Likelihood Estimators. Asymptotic Variances and Covariances. Modified
Moment Estimators. Illustrative Examples. Reflections. 7. CENSORED SAMPLING
IN THE EXPONENTIAL AND WEIBULL DISTRIBUTIONS. Introduction. Progressively
Censored Samples. Censored Samples from the Exponential Distribution.
Censored Samples from the Weibull Distribution. The Hazard Plot. Estimate
Variances and Covariances. An Illustrative Example. 8. CENSORED AND
TRUNCATED SAMPLES FROM THENORMAL AND THE LOGNORMAL DISTRIBUTIONS.
Introductory Remarks. Maximum Likelihood Estimation Modified Maximum
Likelihood Estimators for Lognormal Parameters Based on Censored Samples.
Maximum Likelihood Estimation in the Normal Distribution. An Illustrative
Example from a Lognormal Distribution. CENSORED SAMPLING IN THE INVERSE
GAUSSIAN AND GAMMA DISTRIBUTIONS. Introduction. Censored Sampling in the
Inverse Gaussian Distribution. A Pseudocomplete Sample Technique. Censored
Sampling in the Gamma Distribution. An Illustrative Example. 10. THE
RAYLEIGH DISTRIBUTION. Introduction. Maximum Likelihood and Moment
Estimation in the p-Dimensional Distribution. Special Cases. Complete
Sample Estimators When p = 1, 2, and 3. Two-Parameter Rayleigh
Distribution. Estimation in the Two-Parameter Rayleigh Distribution.
Truncated Samples. Censored Samples. Reliability of Estimates. Illustrative
Examples. Parameter Estimation in the Two-Parameter Rayleigh Distribution
of Dimension 2, When Samples Are Censored. Some Concluding Remarks 11. THE
PARETO DISTRIBUTION. Introduction. Some Fundamentals. Parameter Estimation
from Complete Samples. Parameter Estimation from Truncated Censored
Samples. Reliability of Estimates. An Illustrative Example 12. THE
GENERALIZED GAMMA DISTRIBUTION. Introduction. Parameter Estimation in the
Three-Parameter Distribution. The Four-Parameter Distribution. Estimate
Variances and Covariances. Simplified Computational Procedures for the
Modified Moment Estimators. Illustrative Examples Censored Samples.
Asymptotic Variances and Covariances of Maximum Likelihood Estimators. An
Illustrative Example Some Comments and Recommendations. APPENDIX A. SOME
CONCLUDING REMARKS. FURTHER COMPARISONS. TABLES OF CUMULATIVE DISTRIBUTION
FUNCTIONS. COMPUTER PROGRAMS. Glossary. Bibliography. Index