110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
55 °P sammeln
  • Broschiertes Buch

PARP Inhibitors for Cancer Therapy provides a comprehensive overview of the role of PARP in cancer therapy. The volume covers the history of the discovery of PARP (poly ADP ribose polymerase) and its role in DNA repair. In addition, a description of discovery of the PARP family, and other DNA maintenance-associated PARPs will also be discussed. The volume also features a section on accessible chemistry behind the development of inhibitors.
PARP inhibitors are a group of pharmacological inhibitors that are a particularly good target for cancer therapy. PARP plays a pivotal role in DNA repair
…mehr

Produktbeschreibung
PARP Inhibitors for Cancer Therapy provides a comprehensive overview of the role of PARP in cancer therapy. The volume covers the history of the discovery of PARP (poly ADP ribose polymerase) and its role in DNA repair. In addition, a description of discovery of the PARP family, and other DNA maintenance-associated PARPs will also be discussed. The volume also features a section on accessible chemistry behind the development of inhibitors.

PARP inhibitors are a group of pharmacological inhibitors that are a particularly good target for cancer therapy. PARP plays a pivotal role in DNA repair and may contribute to the therapeutic resistance to DNA damaging agents used to treat cancer. Researchers have learned a tremendous amount about the biology of PARP and how tumour-specific defects in DNA repair can be exploited by PARPi. The "synthetic lethality" of PARPi is an exciting concept for cancer therapy and has led to a heightened activity in this area.
Autorenporträt
Nicola Jane Curtin, Ph.D. is Professor of Experimental Cancer Therapeutics at Newcastle University. Dr. Curtin is also the team leader for DNA damage signalling and repair projects within CR-UK Drug Development Programme. Ricky Sharma is Associate Professor at the University of Oxford and Honorary Consultant in Clinical Oncology at the Oxford University Hospitals NHS Trust. He graduated in medicine from the University of Cambridge, and subsequently trained in toxicology, general internal medicine, medical oncology and clinical oncology in Cambridge, Glasgow, Leicester and London. Since 2006, he has led a translational research group at the University of Oxford focussed on DNA damage repair and the development of new chemotherapy and radiotherapy treatments for cancer.