David Betounes
Partial Differential Equations for Computational Science
With Maple® and Vector Analysis
David Betounes
Partial Differential Equations for Computational Science
With Maple® and Vector Analysis
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This is a classroom-tested and developed textbook designed for use in either one- or two term courses in Partial Differential Equations taught at the advanced undergradute and beginning graduate levels of instruction. In addition to covering the standard PDE topics taught in such courses, there is a heavy focus on vector analysis. Maple examples and exercises for the students are presented strategically within the book, and an Appendix on Maple facilitates the use of this computer algebra language, acting as a quick reference source for readers. This book will have strong appeal to…mehr
Andere Kunden interessierten sich auch für
- Aslak TveitoIntroduction to Partial Differential Equations37,99 €
- J.W. ThomasNumerical Partial Differential Equations52,99 €
- Allaberen AshyralyevNew Difference Schemes for Partial Differential Equations110,99 €
- David BetounesDifferential Equations: Theory and Applications44,99 €
- Victor IsakovInverse Problems for Partial Differential Equations103,99 €
- Peter KotelenezStochastic Ordinary and Stochastic Partial Differential Equations74,99 €
- Richard F. BassDiffusions and Elliptic Operators95,99 €
-
-
-
This is a classroom-tested and developed textbook designed for use in either one- or two term courses in Partial Differential Equations taught at the advanced undergradute and beginning graduate levels of instruction. In addition to covering the standard PDE topics taught in such courses, there is a heavy focus on vector analysis. Maple examples and exercises for the students are presented strategically within the book, and an Appendix on Maple facilitates the use of this computer algebra language, acting as a quick reference source for readers. This book will have strong appeal to interdisciplinary audiences of engineers and scientists, particulary in regard to its treatments of fluid mechanics, heat equations, and continuum mechanics, inclusion of the latter being a unique feature of the presentation.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4612-7456-8
- Softcover reprint of the original 1st ed. 1998
- Seitenzahl: 540
- Erscheinungstermin: 14. Januar 2014
- Englisch
- Abmessung: 244mm x 170mm x 29mm
- Gewicht: 921g
- ISBN-13: 9781461274568
- ISBN-10: 1461274567
- Artikelnr.: 41326745
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: Springer / Springer New York / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4612-7456-8
- Softcover reprint of the original 1st ed. 1998
- Seitenzahl: 540
- Erscheinungstermin: 14. Januar 2014
- Englisch
- Abmessung: 244mm x 170mm x 29mm
- Gewicht: 921g
- ISBN-13: 9781461274568
- ISBN-10: 1461274567
- Artikelnr.: 41326745
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Introduction.- 1.1 Vector Analysis: Some Basic Notions.- 1.2 General Systems of PDEs.- 1.3 The Main Examples of PDEs.- 1.4 The Flow Generated by a Vector Field.- 2 Derivation of the Heat Equation.- 2.1 Heat Flow: Fourier's Law.- 2.2 The Heat Equation (Without Convection).- 2.3 Initial Conditions and Boundary Conditions.- 2.4 Initial-Boundary Value Problems.- 3 The 1-D Heat Equation.- 3.1 The Homogeneous Problem.- 3.2 Separation of Variables.- 3.3 Sturm-Liouville Problems.- 4 Solution of the 1-D Heat Problem.- 4.1 Solution of the Homogeneous Heat IBVP.- 4.2 Transforming to Homogeneous BCs.- 4.3 The Semi-Homogeneous Heat Problem.- 5 Computational Analysis.- 5.1 Plotting Solutions of Heat Problems.- 5.2 Sturm-Liouville Problems.- 5.3 Fourier Analysis.- 6 Two-Dimensional Heat Flow.- 6.1 The 2-D Heat Equation.- 6.2 Rectangular Regions R.- 6.3 The Homogeneous Case.- 6.4 The Semi-Homogeneous Problem.- 6.5 Transforming to Homogeneous BCs.- 7 Boundary Value Problems.- 7.1 The Dirichlet Problem for the Unit Square.- 7.2 The Neumann Problem for the Unit Square.- 7.3 Mixed BVPs.- 8 3-D Heat Flow.- 8.1 The Heat Equation for the Unit Cube.- 8.2 The Semi-Homogeneous Problem.- 8.3 Transforming to Homogeneous BCs.- 8.4 Examples of BVPs for the Unit Cube.- 8.5 Heat Problems for the Cube.- 9 Maxwell's Equations.- 9.1 Maxwell's Equations in Empty Space.- 9.2 Electrostatics and Magnetostatics.- 9.3 Existence of Potentials.- 9.4 Potentials and Gauge Transformations.- 10 Fluid Mechanics.- 10.1 The Stress Tensor for a Fluid.- 10.2 The Fluid Equations.- 10.3 Special Solutions of the Euler Equations.- 10.4 Special Solutions of the Navier-Stokes Equations.- 10.5 Solution of the Navier-Stokes Equations.- 11 Waves in Elastic Materials.- 11.1 Strings: 1-D Elastic Materials.- 11.2 Membranes:2-Dimensional Elastic Materials.- 11.3 Solids: 3-D Elastic Materials.- 12 The Heat IBVP in Polar Coordinates.- 12.1 The Polar Coordinate Map.- 12.2 The Laplacian in Polar Coordinates.- 12.3 The BCs and IC in Polar Coordinates.- 12.4 The Heat IBVP for a Disk.- 12.5 Solution of the Homogeneous Problem.- 12.6 The Heat Equation for an Annulus.- 12.7 The Homogeneous Problem for an Annulus.- 12.8 BVPs in Polar Coordinates.- 13 Solution of the Heat IBVP in General.- 13.1 Weak Solutions of Poisson's Equation.- 13.2 Solution of the Heat IBVP.- Appendix A Vector Analysis.- A.1 Curves and Line Integrals.- A.2 Surfaces and Surface Integrals.- A.3 Regions and Volume Integrals.- A.4 Boundaries.- A.5 Closed Curves and Surfaces.- A.6 The Theorems of Gauss, Green, and Stokes.- A.7 Curvatures and Fundamental Forms.- Appendix B Continuum Mechanics.- B.1 The Eulerian Description.- B.2 The Lagrangian Description.- B.3 Two-Dimensional Materials.- B.4 One-Dimensional Materials.- Appendix C Maple Reference Guide.- C.1 Mathematical Expressions and Functions.- C.2 Packages.- C.3 Plotting and Visualization.- C.4 Plotting Flows.- C.5 Programming.- Appendix D Symbols and Tables.- References.
1 Introduction.- 1.1 Vector Analysis: Some Basic Notions.- 1.2 General Systems of PDEs.- 1.3 The Main Examples of PDEs.- 1.4 The Flow Generated by a Vector Field.- 2 Derivation of the Heat Equation.- 2.1 Heat Flow: Fourier's Law.- 2.2 The Heat Equation (Without Convection).- 2.3 Initial Conditions and Boundary Conditions.- 2.4 Initial-Boundary Value Problems.- 3 The 1-D Heat Equation.- 3.1 The Homogeneous Problem.- 3.2 Separation of Variables.- 3.3 Sturm-Liouville Problems.- 4 Solution of the 1-D Heat Problem.- 4.1 Solution of the Homogeneous Heat IBVP.- 4.2 Transforming to Homogeneous BCs.- 4.3 The Semi-Homogeneous Heat Problem.- 5 Computational Analysis.- 5.1 Plotting Solutions of Heat Problems.- 5.2 Sturm-Liouville Problems.- 5.3 Fourier Analysis.- 6 Two-Dimensional Heat Flow.- 6.1 The 2-D Heat Equation.- 6.2 Rectangular Regions R.- 6.3 The Homogeneous Case.- 6.4 The Semi-Homogeneous Problem.- 6.5 Transforming to Homogeneous BCs.- 7 Boundary Value Problems.- 7.1 The Dirichlet Problem for the Unit Square.- 7.2 The Neumann Problem for the Unit Square.- 7.3 Mixed BVPs.- 8 3-D Heat Flow.- 8.1 The Heat Equation for the Unit Cube.- 8.2 The Semi-Homogeneous Problem.- 8.3 Transforming to Homogeneous BCs.- 8.4 Examples of BVPs for the Unit Cube.- 8.5 Heat Problems for the Cube.- 9 Maxwell's Equations.- 9.1 Maxwell's Equations in Empty Space.- 9.2 Electrostatics and Magnetostatics.- 9.3 Existence of Potentials.- 9.4 Potentials and Gauge Transformations.- 10 Fluid Mechanics.- 10.1 The Stress Tensor for a Fluid.- 10.2 The Fluid Equations.- 10.3 Special Solutions of the Euler Equations.- 10.4 Special Solutions of the Navier-Stokes Equations.- 10.5 Solution of the Navier-Stokes Equations.- 11 Waves in Elastic Materials.- 11.1 Strings: 1-D Elastic Materials.- 11.2 Membranes:2-Dimensional Elastic Materials.- 11.3 Solids: 3-D Elastic Materials.- 12 The Heat IBVP in Polar Coordinates.- 12.1 The Polar Coordinate Map.- 12.2 The Laplacian in Polar Coordinates.- 12.3 The BCs and IC in Polar Coordinates.- 12.4 The Heat IBVP for a Disk.- 12.5 Solution of the Homogeneous Problem.- 12.6 The Heat Equation for an Annulus.- 12.7 The Homogeneous Problem for an Annulus.- 12.8 BVPs in Polar Coordinates.- 13 Solution of the Heat IBVP in General.- 13.1 Weak Solutions of Poisson's Equation.- 13.2 Solution of the Heat IBVP.- Appendix A Vector Analysis.- A.1 Curves and Line Integrals.- A.2 Surfaces and Surface Integrals.- A.3 Regions and Volume Integrals.- A.4 Boundaries.- A.5 Closed Curves and Surfaces.- A.6 The Theorems of Gauss, Green, and Stokes.- A.7 Curvatures and Fundamental Forms.- Appendix B Continuum Mechanics.- B.1 The Eulerian Description.- B.2 The Lagrangian Description.- B.3 Two-Dimensional Materials.- B.4 One-Dimensional Materials.- Appendix C Maple Reference Guide.- C.1 Mathematical Expressions and Functions.- C.2 Packages.- C.3 Plotting and Visualization.- C.4 Plotting Flows.- C.5 Programming.- Appendix D Symbols and Tables.- References.