Isaak Rubenstein, Rubinstein, Isaak Rubinstein
Partial Differential Equations in Classical Mathematical Physics
Isaak Rubenstein, Rubinstein, Isaak Rubinstein
Partial Differential Equations in Classical Mathematical Physics
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The book's combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs.
Andere Kunden interessierten sich auch für
- Joseph WlokaPartial Differential Equations121,99 €
- I. LasieckaControl Theory for Partial Differential Equations286,99 €
- S. PeszatStochastic Partial Differential Equations with Levy Noise155,99 €
- M. Burak Erdo¿anDispersive Partial Differential Equations54,99 €
- I. LasieckaControl Theory for Partial Differential Equations182,99 €
- Dan HenryPerturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations74,99 €
- M. Burak Erdo¿anDispersive Partial Differential Equations87,99 €
-
-
-
The book's combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 696
- Erscheinungstermin: 31. Januar 2007
- Englisch
- Abmessung: 244mm x 170mm x 37mm
- Gewicht: 1180g
- ISBN-13: 9780521558464
- ISBN-10: 0521558468
- Artikelnr.: 21724667
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 696
- Erscheinungstermin: 31. Januar 2007
- Englisch
- Abmessung: 244mm x 170mm x 37mm
- Gewicht: 1180g
- ISBN-13: 9780521558464
- ISBN-10: 0521558468
- Artikelnr.: 21724667
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Preface
1. Introduction
2. Typical equations of mathematical physics. Boundary conditions
3. Cauchy problem for first-order partial differential equations
4. Classification of second-order partial differential equations with linear principal part. Elements of the theory of characteristics
5. Cauchy and mixed problems for the wave equation in R1. Method of travelling waves
6. Cauchy and Goursat problems for a second-order linear hyperbolic equation with two independent variables. Riemann's method
7. Cauchy problem for a 2-dimensional wave equation. The Volterra-D'Adhemar solution
8. Cauchy problem for the wave equation in R3. Methods of averaging and descent. Huygens's principle
9. Basic properties of harmonic functions
10. Green's functions
11. Sequences of harmonic functions. Perron's theorem. Schwarz alternating method
12. Outer boundary-value problems. Elements of potential theory
13. Cauchy problem for heat-conduction equation
14. Maximum principle for parabolic equations
15. Application of Green's formulas. Fundamental identity. Green's functions for Fourier equation
16. Heat potentials
17. Volterra integral equations and their application to solution of boundary-value problems in heat-conduction theory
18. Sequences of parabolic functions
19. Fourier method for bounded regions
20. Integral transform method in unbounded regions
21. Asymptotic expansions. Asymptotic solution of boundary-value problems
Appendix I. Elements of vector analysis
Appendix II. Elements of theory of Bessel functions
Appendix III. Fourier's method and Sturm-Liouville equations
Appendix IV. Fourier integral
Appendix V. Examples of solution of nontrivial engineering and physical problems
References
Index.
1. Introduction
2. Typical equations of mathematical physics. Boundary conditions
3. Cauchy problem for first-order partial differential equations
4. Classification of second-order partial differential equations with linear principal part. Elements of the theory of characteristics
5. Cauchy and mixed problems for the wave equation in R1. Method of travelling waves
6. Cauchy and Goursat problems for a second-order linear hyperbolic equation with two independent variables. Riemann's method
7. Cauchy problem for a 2-dimensional wave equation. The Volterra-D'Adhemar solution
8. Cauchy problem for the wave equation in R3. Methods of averaging and descent. Huygens's principle
9. Basic properties of harmonic functions
10. Green's functions
11. Sequences of harmonic functions. Perron's theorem. Schwarz alternating method
12. Outer boundary-value problems. Elements of potential theory
13. Cauchy problem for heat-conduction equation
14. Maximum principle for parabolic equations
15. Application of Green's formulas. Fundamental identity. Green's functions for Fourier equation
16. Heat potentials
17. Volterra integral equations and their application to solution of boundary-value problems in heat-conduction theory
18. Sequences of parabolic functions
19. Fourier method for bounded regions
20. Integral transform method in unbounded regions
21. Asymptotic expansions. Asymptotic solution of boundary-value problems
Appendix I. Elements of vector analysis
Appendix II. Elements of theory of Bessel functions
Appendix III. Fourier's method and Sturm-Liouville equations
Appendix IV. Fourier integral
Appendix V. Examples of solution of nontrivial engineering and physical problems
References
Index.
Preface
1. Introduction
2. Typical equations of mathematical physics. Boundary conditions
3. Cauchy problem for first-order partial differential equations
4. Classification of second-order partial differential equations with linear principal part. Elements of the theory of characteristics
5. Cauchy and mixed problems for the wave equation in R1. Method of travelling waves
6. Cauchy and Goursat problems for a second-order linear hyperbolic equation with two independent variables. Riemann's method
7. Cauchy problem for a 2-dimensional wave equation. The Volterra-D'Adhemar solution
8. Cauchy problem for the wave equation in R3. Methods of averaging and descent. Huygens's principle
9. Basic properties of harmonic functions
10. Green's functions
11. Sequences of harmonic functions. Perron's theorem. Schwarz alternating method
12. Outer boundary-value problems. Elements of potential theory
13. Cauchy problem for heat-conduction equation
14. Maximum principle for parabolic equations
15. Application of Green's formulas. Fundamental identity. Green's functions for Fourier equation
16. Heat potentials
17. Volterra integral equations and their application to solution of boundary-value problems in heat-conduction theory
18. Sequences of parabolic functions
19. Fourier method for bounded regions
20. Integral transform method in unbounded regions
21. Asymptotic expansions. Asymptotic solution of boundary-value problems
Appendix I. Elements of vector analysis
Appendix II. Elements of theory of Bessel functions
Appendix III. Fourier's method and Sturm-Liouville equations
Appendix IV. Fourier integral
Appendix V. Examples of solution of nontrivial engineering and physical problems
References
Index.
1. Introduction
2. Typical equations of mathematical physics. Boundary conditions
3. Cauchy problem for first-order partial differential equations
4. Classification of second-order partial differential equations with linear principal part. Elements of the theory of characteristics
5. Cauchy and mixed problems for the wave equation in R1. Method of travelling waves
6. Cauchy and Goursat problems for a second-order linear hyperbolic equation with two independent variables. Riemann's method
7. Cauchy problem for a 2-dimensional wave equation. The Volterra-D'Adhemar solution
8. Cauchy problem for the wave equation in R3. Methods of averaging and descent. Huygens's principle
9. Basic properties of harmonic functions
10. Green's functions
11. Sequences of harmonic functions. Perron's theorem. Schwarz alternating method
12. Outer boundary-value problems. Elements of potential theory
13. Cauchy problem for heat-conduction equation
14. Maximum principle for parabolic equations
15. Application of Green's formulas. Fundamental identity. Green's functions for Fourier equation
16. Heat potentials
17. Volterra integral equations and their application to solution of boundary-value problems in heat-conduction theory
18. Sequences of parabolic functions
19. Fourier method for bounded regions
20. Integral transform method in unbounded regions
21. Asymptotic expansions. Asymptotic solution of boundary-value problems
Appendix I. Elements of vector analysis
Appendix II. Elements of theory of Bessel functions
Appendix III. Fourier's method and Sturm-Liouville equations
Appendix IV. Fourier integral
Appendix V. Examples of solution of nontrivial engineering and physical problems
References
Index.