A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Preface Charles L. Fefferman, James C. Robinson and José L. Rodrigo; 1. Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations Claude Bardos; 2. Time-periodic flow of a viscous liquid past a body Giovanni P. Galdi and Mads Kyed; 3. The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence John D. Gibbon, Pooja Rao and Colm-Cille P. Caulfield; 4. On localization and quantitative uniqueness for elliptic partial differential equations Guher Camliyurt, Igor Kukavica and Fei Wang; 5. Quasi-invariance for the Navier-Stokes equations Koji Ohkitani; 6. Leray's fundamental work on the Navier-Stokes equations: a modern review of 'Sur le mouvement d'un liquide visqueux emplissant l'espace' Wojciech S. O¿äski and Benjamin C. Pooley; 7. Stable mild Navier-Stokes solutions by iteration of linear singular Volterra integral equations Reimund Rautmann; 8. Energy conservation in the 3D Euler equations on T2 x R+ James C. Robinson, José L. Rodrigo and Jack W. D. Skipper; 9. Regularity of Navier-Stokes flows with bounds for the velocity gradient along streamlines and an effective pressure Chuong V. Tran and Xinwei Yu; 10. A direct approach to Gevrey regularity on the half-space Igor Kukavica and Vlad Vicol; 11. Weak-strong uniqueness in fluid dynamics Emil Wiedemann.
Preface Charles L. Fefferman, James C. Robinson and José L. Rodrigo; 1. Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier-Stokes equations Claude Bardos; 2. Time-periodic flow of a viscous liquid past a body Giovanni P. Galdi and Mads Kyed; 3. The Rayleigh-Taylor instability in buoyancy-driven variable density turbulence John D. Gibbon, Pooja Rao and Colm-Cille P. Caulfield; 4. On localization and quantitative uniqueness for elliptic partial differential equations Guher Camliyurt, Igor Kukavica and Fei Wang; 5. Quasi-invariance for the Navier-Stokes equations Koji Ohkitani; 6. Leray's fundamental work on the Navier-Stokes equations: a modern review of 'Sur le mouvement d'un liquide visqueux emplissant l'espace' Wojciech S. O¿äski and Benjamin C. Pooley; 7. Stable mild Navier-Stokes solutions by iteration of linear singular Volterra integral equations Reimund Rautmann; 8. Energy conservation in the 3D Euler equations on T2 x R+ James C. Robinson, José L. Rodrigo and Jack W. D. Skipper; 9. Regularity of Navier-Stokes flows with bounds for the velocity gradient along streamlines and an effective pressure Chuong V. Tran and Xinwei Yu; 10. A direct approach to Gevrey regularity on the half-space Igor Kukavica and Vlad Vicol; 11. Weak-strong uniqueness in fluid dynamics Emil Wiedemann.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826