Partial Differential Equations in Fluid Mechanics
Herausgeber: Fefferman, Charles L.; Rodrigo, José L.; Robinson, James C.
Partial Differential Equations in Fluid Mechanics
Herausgeber: Fefferman, Charles L.; Rodrigo, José L.; Robinson, James C.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students.
Andere Kunden interessierten sich auch für
- Pao-Liu ChowStochastic Partial Differential Equations90,99 €
- G F D DuffPartial Differential Equations50,99 €
- Steven G KrantzPartial Differential Equations and Complex Analysis90,99 €
- E. T. CopsonPartial Differential Equations61,99 €
- Guillermo SapiroGeometric Partial Differential Equations and Image Analysis44,99 €
- O. OleinikSome Asymptotic Problems in the Theory of Partial Differential Equations43,99 €
- Giuseppe Da PratoSecond Order Partial Differential Equations in Hilbert Spaces81,99 €
-
-
-
A selection of survey articles and original research papers in mathematical fluid mechanics, for both researchers and graduate students.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 340
- Erscheinungstermin: 22. Februar 2019
- Englisch
- Abmessung: 229mm x 152mm x 20mm
- Gewicht: 553g
- ISBN-13: 9781108460965
- ISBN-10: 1108460968
- Artikelnr.: 53166284
- Verlag: Cambridge University Press
- Seitenzahl: 340
- Erscheinungstermin: 22. Februar 2019
- Englisch
- Abmessung: 229mm x 152mm x 20mm
- Gewicht: 553g
- ISBN-13: 9781108460965
- ISBN-10: 1108460968
- Artikelnr.: 53166284
Preface Charles L. Fefferman, James C. Robinson and José L. Rodrigo; 1.
Remarks on recent advances concerning boundary effects and the vanishing
viscosity limit of the Navier-Stokes equations Claude Bardos; 2.
Time-periodic flow of a viscous liquid past a body Giovanni P. Galdi and
Mads Kyed; 3. The Rayleigh-Taylor instability in buoyancy-driven variable
density turbulence John D. Gibbon, Pooja Rao and Colm-Cille P. Caulfield;
4. On localization and quantitative uniqueness for elliptic partial
differential equations Guher Camliyurt, Igor Kukavica and Fei Wang; 5.
Quasi-invariance for the Navier-Stokes equations Koji Ohkitani; 6. Leray's
fundamental work on the Navier-Stokes equations: a modern review of 'Sur le
mouvement d'un liquide visqueux emplissant l'espace' Wojciech S. O¿äski and
Benjamin C. Pooley; 7. Stable mild Navier-Stokes solutions by iteration of
linear singular Volterra integral equations Reimund Rautmann; 8. Energy
conservation in the 3D Euler equations on T2 x R+ James C. Robinson, José
L. Rodrigo and Jack W. D. Skipper; 9. Regularity of Navier-Stokes flows
with bounds for the velocity gradient along streamlines and an effective
pressure Chuong V. Tran and Xinwei Yu; 10. A direct approach to Gevrey
regularity on the half-space Igor Kukavica and Vlad Vicol; 11. Weak-strong
uniqueness in fluid dynamics Emil Wiedemann.
Remarks on recent advances concerning boundary effects and the vanishing
viscosity limit of the Navier-Stokes equations Claude Bardos; 2.
Time-periodic flow of a viscous liquid past a body Giovanni P. Galdi and
Mads Kyed; 3. The Rayleigh-Taylor instability in buoyancy-driven variable
density turbulence John D. Gibbon, Pooja Rao and Colm-Cille P. Caulfield;
4. On localization and quantitative uniqueness for elliptic partial
differential equations Guher Camliyurt, Igor Kukavica and Fei Wang; 5.
Quasi-invariance for the Navier-Stokes equations Koji Ohkitani; 6. Leray's
fundamental work on the Navier-Stokes equations: a modern review of 'Sur le
mouvement d'un liquide visqueux emplissant l'espace' Wojciech S. O¿äski and
Benjamin C. Pooley; 7. Stable mild Navier-Stokes solutions by iteration of
linear singular Volterra integral equations Reimund Rautmann; 8. Energy
conservation in the 3D Euler equations on T2 x R+ James C. Robinson, José
L. Rodrigo and Jack W. D. Skipper; 9. Regularity of Navier-Stokes flows
with bounds for the velocity gradient along streamlines and an effective
pressure Chuong V. Tran and Xinwei Yu; 10. A direct approach to Gevrey
regularity on the half-space Igor Kukavica and Vlad Vicol; 11. Weak-strong
uniqueness in fluid dynamics Emil Wiedemann.
Preface Charles L. Fefferman, James C. Robinson and José L. Rodrigo; 1.
Remarks on recent advances concerning boundary effects and the vanishing
viscosity limit of the Navier-Stokes equations Claude Bardos; 2.
Time-periodic flow of a viscous liquid past a body Giovanni P. Galdi and
Mads Kyed; 3. The Rayleigh-Taylor instability in buoyancy-driven variable
density turbulence John D. Gibbon, Pooja Rao and Colm-Cille P. Caulfield;
4. On localization and quantitative uniqueness for elliptic partial
differential equations Guher Camliyurt, Igor Kukavica and Fei Wang; 5.
Quasi-invariance for the Navier-Stokes equations Koji Ohkitani; 6. Leray's
fundamental work on the Navier-Stokes equations: a modern review of 'Sur le
mouvement d'un liquide visqueux emplissant l'espace' Wojciech S. O¿äski and
Benjamin C. Pooley; 7. Stable mild Navier-Stokes solutions by iteration of
linear singular Volterra integral equations Reimund Rautmann; 8. Energy
conservation in the 3D Euler equations on T2 x R+ James C. Robinson, José
L. Rodrigo and Jack W. D. Skipper; 9. Regularity of Navier-Stokes flows
with bounds for the velocity gradient along streamlines and an effective
pressure Chuong V. Tran and Xinwei Yu; 10. A direct approach to Gevrey
regularity on the half-space Igor Kukavica and Vlad Vicol; 11. Weak-strong
uniqueness in fluid dynamics Emil Wiedemann.
Remarks on recent advances concerning boundary effects and the vanishing
viscosity limit of the Navier-Stokes equations Claude Bardos; 2.
Time-periodic flow of a viscous liquid past a body Giovanni P. Galdi and
Mads Kyed; 3. The Rayleigh-Taylor instability in buoyancy-driven variable
density turbulence John D. Gibbon, Pooja Rao and Colm-Cille P. Caulfield;
4. On localization and quantitative uniqueness for elliptic partial
differential equations Guher Camliyurt, Igor Kukavica and Fei Wang; 5.
Quasi-invariance for the Navier-Stokes equations Koji Ohkitani; 6. Leray's
fundamental work on the Navier-Stokes equations: a modern review of 'Sur le
mouvement d'un liquide visqueux emplissant l'espace' Wojciech S. O¿äski and
Benjamin C. Pooley; 7. Stable mild Navier-Stokes solutions by iteration of
linear singular Volterra integral equations Reimund Rautmann; 8. Energy
conservation in the 3D Euler equations on T2 x R+ James C. Robinson, José
L. Rodrigo and Jack W. D. Skipper; 9. Regularity of Navier-Stokes flows
with bounds for the velocity gradient along streamlines and an effective
pressure Chuong V. Tran and Xinwei Yu; 10. A direct approach to Gevrey
regularity on the half-space Igor Kukavica and Vlad Vicol; 11. Weak-strong
uniqueness in fluid dynamics Emil Wiedemann.