22,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
payback
11 °P sammeln
  • Broschiertes Buch

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. A Partially Observable Markov Decision Process (POMDP) is a generalization of a Markov Decision Process. A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it must maintain a probability distribution over the set of possible states, based on a set of observations and observation probabilities, and the underlying MDP. The POMDP framework…mehr

Produktbeschreibung
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. A Partially Observable Markov Decision Process (POMDP) is a generalization of a Markov Decision Process. A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state. Instead, it must maintain a probability distribution over the set of possible states, based on a set of observations and observation probabilities, and the underlying MDP. The POMDP framework is general enough to model a variety of real-world sequential decision processes. Applications include robot navigation problems, machine maintenance, and planning under uncertainty in general. The framework originated in the Operations Research community, and was later taken over by the Artificial Intelligence and Automated Planning communities.