274,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
137 °P sammeln
  • Gebundenes Buch

In the small world of micrometer to nanometer scale many natural and industrial processes include attachment of colloid particles (solid spheres, liquid droplets, gas bubbles or protein macromolecules) to fluid interfaces and their confinement in liquid films. This may lead to the appearance of lateral interactions between particles at interfaces, or between inclusions in phospholipid membranes, followed eventually by the formation of two-dimensional ordered arrays. The book is devoted to the description of such processes, their consecutive stages, and to the investigation of the underlying…mehr

Produktbeschreibung
In the small world of micrometer to nanometer scale many natural and industrial processes include attachment of colloid particles (solid spheres, liquid droplets, gas bubbles or protein macromolecules) to fluid interfaces and their confinement in liquid films. This may lead to the appearance of lateral interactions between particles at interfaces, or between inclusions in phospholipid membranes, followed eventually by the formation of two-dimensional ordered arrays. The book is devoted to the description of such processes, their consecutive stages, and to the investigation of the underlying physico-chemical mechanisms. The first six chapters give a concise but informative introduction to the basic knowledge in surface and colloid science, which includes both traditional concepts and some recent results. Chapters 1 and 2 are devoted to the basic theory of capillarity, kinetics of surfactant adsorption, shapes of axisymmetric fluid interfaces, contact angles and line tension. Chapters 3 and 4 present a generalization of the theory of capillarity to the case, in which the variation of the interfacial (membrane) curvature contributes to the total energy of the system. The generalized Laplace equation is applied to determine the configurations of free and adherent biological cells. Chapters 5 and 6 are focused on the role of thin liquid films and hydrodynamic factors in the attachment of solid and fluid particles to an interface. Surface forces of various physical nature are presented and their relative importance is discussed. Hydrodynamic interactions of a colloidal particle with an interface (or another particle) are also considered. Chapters 7 to 10 are devoted to the theoreticalfoundation of various kinds of capillary forces. When two particles are attached to the same interface (membrane), capillary interactions, mediated by the interface or membrane, appear between them. Two major kinds of capillary interactions are described: (i) capillary immer