74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Gebundenes Buch

This book concerns the theoretical foundations of hydro mechanics of Pelton turbines from a viewpoint of engineering. For reference purposes all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations.…mehr

Produktbeschreibung
This book concerns the theoretical foundations of hydro mechanics of Pelton turbines from a viewpoint of engineering. For reference purposes all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understanding the related flow mechanics.

Autorenporträt
Dr.-Ing. Zh. Zhang graduated from the School of Energy & Power Engineering of Xi'an Jiaotong University (PR China) in 1981. He received his PhD at the Institute of Thermo and Fluid Dynamics of Ruhr-University Bochum (Germany). Afterwards he joined Sulzer Markets & Technology Ltd in Winterthur, Switzerland, for experimental research of engineering flows. During this time he was awarded the company innovation prize. He changed later to the Oberhasli Hydroelectric Power Company (KWO) and later to Rütschi Fluids AG. Currently he is a visit engineer for supporting the research projects at the Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of the Swiss Federal Institute of Technology in Zurich (ETHZ). He is the author of the monographs 'Freistrahlturbinen' 2008 and 'LDA Application Methods' 2010. In 2014, he was elected to ASME Fellow.