Jorge L. Ramírez-Alfonsín / Bruce A. Reed (Hgg.)
Perfect Graphs
Herausgegeben:Ramírez-Alfonsín, Jorge L.; Reed, Bruce A.
Jorge L. Ramírez-Alfonsín / Bruce A. Reed (Hgg.)
Perfect Graphs
Herausgegeben:Ramírez-Alfonsín, Jorge L.; Reed, Bruce A.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Ein moderner Ansatz zur Diskussion der neuesten Entwicklungen der idealen Graphentheorie! Gestützt auf die wichtigsten Originalarbeiten erläutert der Autor gegenwärtige Forschungsaufgaben und die Verknüpfung zwischen idealen Graphen und anderen Gebieten der Mathematik. Dabei führt er auch fachübergreifende Beispiele an, u.a. die Anwendung idealer Graphen zur Frequenzzuordnung in der Nachrichtentechnik oder die semidefinite Programmierung. Nicht nur für Mathematiker, sondern auch für Informatiker und Kommunikationswissenschaftler interessant!
Andere Kunden interessierten sich auch für
- George TourlakisTheory of Computation154,99 €
- Svante JansonRandom Graphs208,99 €
- Russell MerrisGraph Theory229,99 €
- John HarrisCombinatorics and Graph Theory62,99 €
- Eric GossettDiscrete Mathematics with Proof179,99 €
- K. ThulasiramanGraphs312,99 €
- Wilfried ImrichTopics in Graph Theory247,99 €
-
-
-
Ein moderner Ansatz zur Diskussion der neuesten Entwicklungen der idealen Graphentheorie! Gestützt auf die wichtigsten Originalarbeiten erläutert der Autor gegenwärtige Forschungsaufgaben und die Verknüpfung zwischen idealen Graphen und anderen Gebieten der Mathematik. Dabei führt er auch fachübergreifende Beispiele an, u.a. die Anwendung idealer Graphen zur Frequenzzuordnung in der Nachrichtentechnik oder die semidefinite Programmierung. Nicht nur für Mathematiker, sondern auch für Informatiker und Kommunikationswissenschaftler interessant!
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Wiley-Interscience Series in Discrete Mathematics and Optimization
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 386
- Erscheinungstermin: 28. November 2001
- Englisch
- Abmessung: 253mm x 174mm x 27mm
- Gewicht: 862g
- ISBN-13: 9780471489702
- ISBN-10: 0471489700
- Artikelnr.: 09739354
- Wiley-Interscience Series in Discrete Mathematics and Optimization
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 386
- Erscheinungstermin: 28. November 2001
- Englisch
- Abmessung: 253mm x 174mm x 27mm
- Gewicht: 862g
- ISBN-13: 9780471489702
- ISBN-10: 0471489700
- Artikelnr.: 09739354
Jorge L. Ramírez-Alfonsín is the editor of Perfect Graphs, published by Wiley. Bruce Alan Reed FRSC is a Canadian mathematician and computer scientist, the Canada Research Chair in Graph Theory and a professor of computer science at McGill University. His research is primarily in graph theory.
List of Contributors.
Preface.
Acknowledgements.
1. Origins and Genesis (C. Berge and J.L. Ramirez Alfonsin).
Perfection.
Communication Theory.
The Perfect Graph Conjecture.
Shannon's Capacity.
Translation of the Halle-Wittenberg Proceedings.
Indian Report.
References.
2. From Conjecture to Theorem (Bruce A Reed).
Gallai's Graphs.
The Perfect Graph Theorem.
Some Polyhedral Consequences.
A Stronger Theorem.
References.
3. A Translation of Gallai's Paper: "Transitiv Orientierbare Graphen"
(Frederic Maffray and Myriam Preissmann).
Introduction and Results.
The Proofs of Theorems (3.12), (3.15) and 3.16).
The Proofs of (3.18) and (3.19).
The Proofs of (3.1.16).
The Proofs of (3.1.17).
Determination of all Irreducible Graphs.
Determination of the Irreducible Graphs.
References.
4. Even Pairs (Hazel Everett et al).
Introduction.
Even Pairs and Perfect Graphs.
Perfectly Contractile Graphs.
Quasi-parity Graphs.
Recent Progress.
Odd Pairs.
References.
5. The P_4-Structure of Perfect Graphs (Stefan Hougardy).
Introduction.
P_4-Stucture: Basics, Isomorphisms and Recognition.
Modules, h-Sets, Split Graphs and Unique P_4-Structure.
The Semi-Strong perfect Graph Theorem.
The Structure of the P_4-Isomorphism Classes.
Recognizing P_4-Structure.
The P_4-Structure of Minimally Imperfect Graphs.
The Partner Structure and Other Generalizations.
P_3-Structure.
References.
6. Forbidding Holes and Antiholes (Ryan Hayward and Bruce A. Reed).
Introduction.
Graphs with No Holes.
Graphs with No Discs.
Graphs with No Long Holes.
Balanced Matrices.
Bipartitie Graphs with No Hole of Length 4k + 2.
Graphs without Even Holes.
-Perfect Graphs.
Graphs without Odd Holes.
References.
7. Perfectly Orderable Graphs: A Survey (Chinh T Hoang).
Introduction.
Classical Graphs.
Minimal Nonperfectly Orderable Graphs.
Orientations.
Generalizations of Triangulated Graphs.
Generalizations of Complements of Chordal Bipartitie Graphs.
Other Classes of Perfectly Orderable Graphs.
Vertex Orderings.
Generalizations of Perfectly Orderable Graphs.
Optimizing Perfectly Ordered Graphs.
References.
8. Cutsets in Perfect and Minimal Imperfect Graphs (Irena Rusu).
Introduction.
How Did It Start?
Main Results on Minimal Imperfect Graphs.
Applications: Star Cutsets.
Applications: Clique and Multipartite Cutsets.
Applications: Stable Cutsets.
Two (Resolved) Conjectures.
The Connectivity of Minimal Imperfect Graphs.
Some (More) Problems.
References.
9. Some Aspects of Minimal Imperfect Graphs (Myriam Preissmann and Andras
Sebo).
Introduction.
Imperfect and Partitionable Graphs.
Properties.
Constructions.
References.
10. Graph Imperfection and Channel Assignment (Colin McDiarmid).
Introduction.
The Imperfection Ratio.
An Alternative Definition.
Further Results and Questions.
background on Channel Assignment.
References.
11. A Gentle Introduction to Semi-definite Programming (Bruce A. Reed).
Introduction.
The Ellipsoid Method.
Solving Semi-definite Programs.
Randomized Rounding and Derandomization.
Approximating MAXCUT.
Approximating Bandwidth.
Graph Colouring.
12. The Theta Body.
References.
The Theta Body and Imperfection (F.B. Shepherd).
Background and Overview.
Optimization, Convexity and Geometry.
The Theta Body.
Partitionable Graphs.
Perfect Graph Characterizations and a Continuous Perfect Graph Conjecture.
References.
13. Perfect Graphs and Graph Entropy (Gabor Simonyi).
Introduction.
The Information-Theoretic Interpretation.
Some Basic Properties.
Structural Theorems: Relation to Perfectness.
Applications.
Generalizations.
Graph Capacities and Other Related Functionals.
References.
14 A Bibliography on Perfect Graphs (Vaek Chvátal).
Index.
Preface.
Acknowledgements.
1. Origins and Genesis (C. Berge and J.L. Ramirez Alfonsin).
Perfection.
Communication Theory.
The Perfect Graph Conjecture.
Shannon's Capacity.
Translation of the Halle-Wittenberg Proceedings.
Indian Report.
References.
2. From Conjecture to Theorem (Bruce A Reed).
Gallai's Graphs.
The Perfect Graph Theorem.
Some Polyhedral Consequences.
A Stronger Theorem.
References.
3. A Translation of Gallai's Paper: "Transitiv Orientierbare Graphen"
(Frederic Maffray and Myriam Preissmann).
Introduction and Results.
The Proofs of Theorems (3.12), (3.15) and 3.16).
The Proofs of (3.18) and (3.19).
The Proofs of (3.1.16).
The Proofs of (3.1.17).
Determination of all Irreducible Graphs.
Determination of the Irreducible Graphs.
References.
4. Even Pairs (Hazel Everett et al).
Introduction.
Even Pairs and Perfect Graphs.
Perfectly Contractile Graphs.
Quasi-parity Graphs.
Recent Progress.
Odd Pairs.
References.
5. The P_4-Structure of Perfect Graphs (Stefan Hougardy).
Introduction.
P_4-Stucture: Basics, Isomorphisms and Recognition.
Modules, h-Sets, Split Graphs and Unique P_4-Structure.
The Semi-Strong perfect Graph Theorem.
The Structure of the P_4-Isomorphism Classes.
Recognizing P_4-Structure.
The P_4-Structure of Minimally Imperfect Graphs.
The Partner Structure and Other Generalizations.
P_3-Structure.
References.
6. Forbidding Holes and Antiholes (Ryan Hayward and Bruce A. Reed).
Introduction.
Graphs with No Holes.
Graphs with No Discs.
Graphs with No Long Holes.
Balanced Matrices.
Bipartitie Graphs with No Hole of Length 4k + 2.
Graphs without Even Holes.
-Perfect Graphs.
Graphs without Odd Holes.
References.
7. Perfectly Orderable Graphs: A Survey (Chinh T Hoang).
Introduction.
Classical Graphs.
Minimal Nonperfectly Orderable Graphs.
Orientations.
Generalizations of Triangulated Graphs.
Generalizations of Complements of Chordal Bipartitie Graphs.
Other Classes of Perfectly Orderable Graphs.
Vertex Orderings.
Generalizations of Perfectly Orderable Graphs.
Optimizing Perfectly Ordered Graphs.
References.
8. Cutsets in Perfect and Minimal Imperfect Graphs (Irena Rusu).
Introduction.
How Did It Start?
Main Results on Minimal Imperfect Graphs.
Applications: Star Cutsets.
Applications: Clique and Multipartite Cutsets.
Applications: Stable Cutsets.
Two (Resolved) Conjectures.
The Connectivity of Minimal Imperfect Graphs.
Some (More) Problems.
References.
9. Some Aspects of Minimal Imperfect Graphs (Myriam Preissmann and Andras
Sebo).
Introduction.
Imperfect and Partitionable Graphs.
Properties.
Constructions.
References.
10. Graph Imperfection and Channel Assignment (Colin McDiarmid).
Introduction.
The Imperfection Ratio.
An Alternative Definition.
Further Results and Questions.
background on Channel Assignment.
References.
11. A Gentle Introduction to Semi-definite Programming (Bruce A. Reed).
Introduction.
The Ellipsoid Method.
Solving Semi-definite Programs.
Randomized Rounding and Derandomization.
Approximating MAXCUT.
Approximating Bandwidth.
Graph Colouring.
12. The Theta Body.
References.
The Theta Body and Imperfection (F.B. Shepherd).
Background and Overview.
Optimization, Convexity and Geometry.
The Theta Body.
Partitionable Graphs.
Perfect Graph Characterizations and a Continuous Perfect Graph Conjecture.
References.
13. Perfect Graphs and Graph Entropy (Gabor Simonyi).
Introduction.
The Information-Theoretic Interpretation.
Some Basic Properties.
Structural Theorems: Relation to Perfectness.
Applications.
Generalizations.
Graph Capacities and Other Related Functionals.
References.
14 A Bibliography on Perfect Graphs (Vaek Chvátal).
Index.
List of Contributors.
Preface.
Acknowledgements.
1. Origins and Genesis (C. Berge and J.L. Ramirez Alfonsin).
Perfection.
Communication Theory.
The Perfect Graph Conjecture.
Shannon's Capacity.
Translation of the Halle-Wittenberg Proceedings.
Indian Report.
References.
2. From Conjecture to Theorem (Bruce A Reed).
Gallai's Graphs.
The Perfect Graph Theorem.
Some Polyhedral Consequences.
A Stronger Theorem.
References.
3. A Translation of Gallai's Paper: "Transitiv Orientierbare Graphen"
(Frederic Maffray and Myriam Preissmann).
Introduction and Results.
The Proofs of Theorems (3.12), (3.15) and 3.16).
The Proofs of (3.18) and (3.19).
The Proofs of (3.1.16).
The Proofs of (3.1.17).
Determination of all Irreducible Graphs.
Determination of the Irreducible Graphs.
References.
4. Even Pairs (Hazel Everett et al).
Introduction.
Even Pairs and Perfect Graphs.
Perfectly Contractile Graphs.
Quasi-parity Graphs.
Recent Progress.
Odd Pairs.
References.
5. The P_4-Structure of Perfect Graphs (Stefan Hougardy).
Introduction.
P_4-Stucture: Basics, Isomorphisms and Recognition.
Modules, h-Sets, Split Graphs and Unique P_4-Structure.
The Semi-Strong perfect Graph Theorem.
The Structure of the P_4-Isomorphism Classes.
Recognizing P_4-Structure.
The P_4-Structure of Minimally Imperfect Graphs.
The Partner Structure and Other Generalizations.
P_3-Structure.
References.
6. Forbidding Holes and Antiholes (Ryan Hayward and Bruce A. Reed).
Introduction.
Graphs with No Holes.
Graphs with No Discs.
Graphs with No Long Holes.
Balanced Matrices.
Bipartitie Graphs with No Hole of Length 4k + 2.
Graphs without Even Holes.
-Perfect Graphs.
Graphs without Odd Holes.
References.
7. Perfectly Orderable Graphs: A Survey (Chinh T Hoang).
Introduction.
Classical Graphs.
Minimal Nonperfectly Orderable Graphs.
Orientations.
Generalizations of Triangulated Graphs.
Generalizations of Complements of Chordal Bipartitie Graphs.
Other Classes of Perfectly Orderable Graphs.
Vertex Orderings.
Generalizations of Perfectly Orderable Graphs.
Optimizing Perfectly Ordered Graphs.
References.
8. Cutsets in Perfect and Minimal Imperfect Graphs (Irena Rusu).
Introduction.
How Did It Start?
Main Results on Minimal Imperfect Graphs.
Applications: Star Cutsets.
Applications: Clique and Multipartite Cutsets.
Applications: Stable Cutsets.
Two (Resolved) Conjectures.
The Connectivity of Minimal Imperfect Graphs.
Some (More) Problems.
References.
9. Some Aspects of Minimal Imperfect Graphs (Myriam Preissmann and Andras
Sebo).
Introduction.
Imperfect and Partitionable Graphs.
Properties.
Constructions.
References.
10. Graph Imperfection and Channel Assignment (Colin McDiarmid).
Introduction.
The Imperfection Ratio.
An Alternative Definition.
Further Results and Questions.
background on Channel Assignment.
References.
11. A Gentle Introduction to Semi-definite Programming (Bruce A. Reed).
Introduction.
The Ellipsoid Method.
Solving Semi-definite Programs.
Randomized Rounding and Derandomization.
Approximating MAXCUT.
Approximating Bandwidth.
Graph Colouring.
12. The Theta Body.
References.
The Theta Body and Imperfection (F.B. Shepherd).
Background and Overview.
Optimization, Convexity and Geometry.
The Theta Body.
Partitionable Graphs.
Perfect Graph Characterizations and a Continuous Perfect Graph Conjecture.
References.
13. Perfect Graphs and Graph Entropy (Gabor Simonyi).
Introduction.
The Information-Theoretic Interpretation.
Some Basic Properties.
Structural Theorems: Relation to Perfectness.
Applications.
Generalizations.
Graph Capacities and Other Related Functionals.
References.
14 A Bibliography on Perfect Graphs (Vaek Chvátal).
Index.
Preface.
Acknowledgements.
1. Origins and Genesis (C. Berge and J.L. Ramirez Alfonsin).
Perfection.
Communication Theory.
The Perfect Graph Conjecture.
Shannon's Capacity.
Translation of the Halle-Wittenberg Proceedings.
Indian Report.
References.
2. From Conjecture to Theorem (Bruce A Reed).
Gallai's Graphs.
The Perfect Graph Theorem.
Some Polyhedral Consequences.
A Stronger Theorem.
References.
3. A Translation of Gallai's Paper: "Transitiv Orientierbare Graphen"
(Frederic Maffray and Myriam Preissmann).
Introduction and Results.
The Proofs of Theorems (3.12), (3.15) and 3.16).
The Proofs of (3.18) and (3.19).
The Proofs of (3.1.16).
The Proofs of (3.1.17).
Determination of all Irreducible Graphs.
Determination of the Irreducible Graphs.
References.
4. Even Pairs (Hazel Everett et al).
Introduction.
Even Pairs and Perfect Graphs.
Perfectly Contractile Graphs.
Quasi-parity Graphs.
Recent Progress.
Odd Pairs.
References.
5. The P_4-Structure of Perfect Graphs (Stefan Hougardy).
Introduction.
P_4-Stucture: Basics, Isomorphisms and Recognition.
Modules, h-Sets, Split Graphs and Unique P_4-Structure.
The Semi-Strong perfect Graph Theorem.
The Structure of the P_4-Isomorphism Classes.
Recognizing P_4-Structure.
The P_4-Structure of Minimally Imperfect Graphs.
The Partner Structure and Other Generalizations.
P_3-Structure.
References.
6. Forbidding Holes and Antiholes (Ryan Hayward and Bruce A. Reed).
Introduction.
Graphs with No Holes.
Graphs with No Discs.
Graphs with No Long Holes.
Balanced Matrices.
Bipartitie Graphs with No Hole of Length 4k + 2.
Graphs without Even Holes.
-Perfect Graphs.
Graphs without Odd Holes.
References.
7. Perfectly Orderable Graphs: A Survey (Chinh T Hoang).
Introduction.
Classical Graphs.
Minimal Nonperfectly Orderable Graphs.
Orientations.
Generalizations of Triangulated Graphs.
Generalizations of Complements of Chordal Bipartitie Graphs.
Other Classes of Perfectly Orderable Graphs.
Vertex Orderings.
Generalizations of Perfectly Orderable Graphs.
Optimizing Perfectly Ordered Graphs.
References.
8. Cutsets in Perfect and Minimal Imperfect Graphs (Irena Rusu).
Introduction.
How Did It Start?
Main Results on Minimal Imperfect Graphs.
Applications: Star Cutsets.
Applications: Clique and Multipartite Cutsets.
Applications: Stable Cutsets.
Two (Resolved) Conjectures.
The Connectivity of Minimal Imperfect Graphs.
Some (More) Problems.
References.
9. Some Aspects of Minimal Imperfect Graphs (Myriam Preissmann and Andras
Sebo).
Introduction.
Imperfect and Partitionable Graphs.
Properties.
Constructions.
References.
10. Graph Imperfection and Channel Assignment (Colin McDiarmid).
Introduction.
The Imperfection Ratio.
An Alternative Definition.
Further Results and Questions.
background on Channel Assignment.
References.
11. A Gentle Introduction to Semi-definite Programming (Bruce A. Reed).
Introduction.
The Ellipsoid Method.
Solving Semi-definite Programs.
Randomized Rounding and Derandomization.
Approximating MAXCUT.
Approximating Bandwidth.
Graph Colouring.
12. The Theta Body.
References.
The Theta Body and Imperfection (F.B. Shepherd).
Background and Overview.
Optimization, Convexity and Geometry.
The Theta Body.
Partitionable Graphs.
Perfect Graph Characterizations and a Continuous Perfect Graph Conjecture.
References.
13. Perfect Graphs and Graph Entropy (Gabor Simonyi).
Introduction.
The Information-Theoretic Interpretation.
Some Basic Properties.
Structural Theorems: Relation to Perfectness.
Applications.
Generalizations.
Graph Capacities and Other Related Functionals.
References.
14 A Bibliography on Perfect Graphs (Vaek Chvátal).
Index.