This book explores the foundations of mathematical thought. The aim of this book is to encourage young mathematicians into thinking about the philosophical issues behind fundamental concepts and about different views on mathematical objects and mathematical knowledge.
This book explores the foundations of mathematical thought. The aim of this book is to encourage young mathematicians into thinking about the philosophical issues behind fundamental concepts and about different views on mathematical objects and mathematical knowledge.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Ahmet Çevik is Associate Professor of logic and foundations of mathematics, working in both mathematical and philosophical domains. He holds a Ph.D. from the University of Leeds, UK. Ahmet was postdoctoral visitor in the Department of Mathematics at the University of California, Berkeley. He has lectured at Middle East Technical University and is affiliated with the Gendarmerie and Coast Guard Academy, in Ankara, Turkey. His research interests are mathematical logic, recursion theory, theoretical computer science, and philosophy of mathematics.
Inhaltsangabe
1. Introduction 2. Mathematical Preliminaries 3. Platonism 4. Intuitionism 5. Logicism 6. Formalism 7. Gödel's Incompleteness Theorem and Computability 8. The Church-Turing Thesis 9. Infinity 10. Supertasks 11. Models, Completeness, and Skolem's Paradox 12. Axiom of Choice 13. Naturalism 14. Structuralism 15. Yablo's Paradox 16. Mathematical Pluralism 17. Does Mathematics Need More Axioms? 18. Mathematical Nominalism
1. Introduction 2. Mathematical Preliminaries 3. Platonism 4. Intuitionism 5. Logicism 6. Formalism 7. Gödel's Incompleteness Theorem and Computability 8. The Church-Turing Thesis 9. Infinity 10. Supertasks 11. Models, Completeness, and Skolem's Paradox 12. Axiom of Choice 13. Naturalism 14. Structuralism 15. Yablo's Paradox 16. Mathematical Pluralism 17. Does Mathematics Need More Axioms? 18. Mathematical Nominalism
1. Introduction 2. Mathematical Preliminaries 3. Platonism 4. Intuitionism 5. Logicism 6. Formalism 7. Gödel's Incompleteness Theorem and Computability 8. The Church-Turing Thesis 9. Infinity 10. Supertasks 11. Models, Completeness, and Skolem's Paradox 12. Axiom of Choice 13. Naturalism 14. Structuralism 15. Yablo's Paradox 16. Mathematical Pluralism 17. Does Mathematics Need More Axioms? 18. Mathematical Nominalism
1. Introduction 2. Mathematical Preliminaries 3. Platonism 4. Intuitionism 5. Logicism 6. Formalism 7. Gödel's Incompleteness Theorem and Computability 8. The Church-Turing Thesis 9. Infinity 10. Supertasks 11. Models, Completeness, and Skolem's Paradox 12. Axiom of Choice 13. Naturalism 14. Structuralism 15. Yablo's Paradox 16. Mathematical Pluralism 17. Does Mathematics Need More Axioms? 18. Mathematical Nominalism
Rezensionen
"The philosophically minded mathematician will find every penny and every second engaged with this book well spent." - Firdous Ahmad Mala, The Mathematical Intelligencer
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826