- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A mathematical approximation method important for many branches of theoretical physics, applied mathematics and engineering.
Andere Kunden interessierten sich auch für
- Nanny FromanPhysical Problems Solved by the Phase-Integral Method48,99 €
- Gregor SkacejSolved Problems in Thermodynamics and Statistical Physics59,99 €
- Adrian BevanStatistical Data Analysis for the Physical Sciences70,99 €
- Ryogo HirotaThe Direct Method in Soliton Theory94,99 €
- Roel SniederA Guided Tour of Mathematical Methods for the Physical Sciences140,99 €
- James ReadThe Philosophy and Physics of Noether's Theorems153,99 €
- Neil GershenfeldThe Nature of Mathematical Modeling63,99 €
-
-
-
A mathematical approximation method important for many branches of theoretical physics, applied mathematics and engineering.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 230
- Erscheinungstermin: 8. Februar 2016
- Englisch
- Abmessung: 250mm x 175mm x 17mm
- Gewicht: 584g
- ISBN-13: 9780521812092
- ISBN-10: 0521812097
- Artikelnr.: 22239539
- Verlag: Cambridge University Press
- Seitenzahl: 230
- Erscheinungstermin: 8. Februar 2016
- Englisch
- Abmessung: 250mm x 175mm x 17mm
- Gewicht: 584g
- ISBN-13: 9780521812092
- ISBN-10: 0521812097
- Artikelnr.: 22239539
Part I. Historical Survey: 1. History of an approximation method of wide importance in various branches of physics
Part II. Description of the Phase-Integral Method: 2. Form of the wave function and the q-equation
3. Phase-integral approximation generated from an unspecified base function
4. F-matrix method
5. F-matrix connecting points on opposite sides of a well isolated turning point, and expressions for the wave function in these regions
6. Phase-integral connection formulas for a real, smooth, single-hump potential barrier
Part III. Problems With Solutions: 1. Determination of a convenient base function
2. Determination of a phase-integral function satisfying the Schrödinger equation exactly
3. Properties of the phase-integral approximation along certain paths
4. Stokes constants and connection formulas
5. Airy's differential equation
6. Change of phase of the wave function in a classically allowed region due to the change of a boundary condition imposed in an adjacent classically forbidden region
7. Phase shift
8. Nearlying energy levels
9. Quantization conditions
10. Determination of the potential from the energy spectrum
11. Formulas for the normalization integral, not involving the wave function
12. Potential with a strong attractive Coulomb singularity at the origin
13. Formulas for expectation values and matrix elements, not involving the wave function
14. Potential barriers
References.
Part II. Description of the Phase-Integral Method: 2. Form of the wave function and the q-equation
3. Phase-integral approximation generated from an unspecified base function
4. F-matrix method
5. F-matrix connecting points on opposite sides of a well isolated turning point, and expressions for the wave function in these regions
6. Phase-integral connection formulas for a real, smooth, single-hump potential barrier
Part III. Problems With Solutions: 1. Determination of a convenient base function
2. Determination of a phase-integral function satisfying the Schrödinger equation exactly
3. Properties of the phase-integral approximation along certain paths
4. Stokes constants and connection formulas
5. Airy's differential equation
6. Change of phase of the wave function in a classically allowed region due to the change of a boundary condition imposed in an adjacent classically forbidden region
7. Phase shift
8. Nearlying energy levels
9. Quantization conditions
10. Determination of the potential from the energy spectrum
11. Formulas for the normalization integral, not involving the wave function
12. Potential with a strong attractive Coulomb singularity at the origin
13. Formulas for expectation values and matrix elements, not involving the wave function
14. Potential barriers
References.
Part I. Historical Survey: 1. History of an approximation method of wide importance in various branches of physics
Part II. Description of the Phase-Integral Method: 2. Form of the wave function and the q-equation
3. Phase-integral approximation generated from an unspecified base function
4. F-matrix method
5. F-matrix connecting points on opposite sides of a well isolated turning point, and expressions for the wave function in these regions
6. Phase-integral connection formulas for a real, smooth, single-hump potential barrier
Part III. Problems With Solutions: 1. Determination of a convenient base function
2. Determination of a phase-integral function satisfying the Schrödinger equation exactly
3. Properties of the phase-integral approximation along certain paths
4. Stokes constants and connection formulas
5. Airy's differential equation
6. Change of phase of the wave function in a classically allowed region due to the change of a boundary condition imposed in an adjacent classically forbidden region
7. Phase shift
8. Nearlying energy levels
9. Quantization conditions
10. Determination of the potential from the energy spectrum
11. Formulas for the normalization integral, not involving the wave function
12. Potential with a strong attractive Coulomb singularity at the origin
13. Formulas for expectation values and matrix elements, not involving the wave function
14. Potential barriers
References.
Part II. Description of the Phase-Integral Method: 2. Form of the wave function and the q-equation
3. Phase-integral approximation generated from an unspecified base function
4. F-matrix method
5. F-matrix connecting points on opposite sides of a well isolated turning point, and expressions for the wave function in these regions
6. Phase-integral connection formulas for a real, smooth, single-hump potential barrier
Part III. Problems With Solutions: 1. Determination of a convenient base function
2. Determination of a phase-integral function satisfying the Schrödinger equation exactly
3. Properties of the phase-integral approximation along certain paths
4. Stokes constants and connection formulas
5. Airy's differential equation
6. Change of phase of the wave function in a classically allowed region due to the change of a boundary condition imposed in an adjacent classically forbidden region
7. Phase shift
8. Nearlying energy levels
9. Quantization conditions
10. Determination of the potential from the energy spectrum
11. Formulas for the normalization integral, not involving the wave function
12. Potential with a strong attractive Coulomb singularity at the origin
13. Formulas for expectation values and matrix elements, not involving the wave function
14. Potential barriers
References.