- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This textbook gives an instructive view of solitons and their applications for advanced students of physics.
Andere Kunden interessierten sich auch für
- V. BelinskiGravitational Solitons225,99 €
- P. G. DrazinSolitons36,99 €
- V. BelinskiGravitational Solitons69,99 €
- Nicholas MantonTopological Solitons249,99 €
- Nicholas MantonTopological Solitons125,99 €
- Susanne PfalznerMany-Body Tree Methods in Physics48,99 €
- Susanne PfalznerMany-Body Tree Methods in Physics147,99 €
-
-
-
This textbook gives an instructive view of solitons and their applications for advanced students of physics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 436
- Erscheinungstermin: 30. April 2010
- Englisch
- Abmessung: 244mm x 170mm x 23mm
- Gewicht: 748g
- ISBN-13: 9780521143608
- ISBN-10: 0521143608
- Artikelnr.: 30205989
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 436
- Erscheinungstermin: 30. April 2010
- Englisch
- Abmessung: 244mm x 170mm x 23mm
- Gewicht: 748g
- ISBN-13: 9780521143608
- ISBN-10: 0521143608
- Artikelnr.: 30205989
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
List of Portraits
Preface
Part I. Different Classes of Solitons: Introduction
1. Nontopological solitons: the Korteweg-de Vries equation
2. Topological soltitons: sine-Gordon equation
3. Envelope solitons and nonlinear localisation: the nonlinear Schrödinger equation
4. The modelling process: ion acoustic waves in a plasma
Part II. Mathematical Methods for the Study of Solitons: Introduction
5. Linearisation around the soliton solution
6. Collective coordinate method
7. The inverse-scattering transform
Part III. Examples in Solid State and Atomic Physics: Introduction
8. The Ferm-Pasta-Ulam problem
9. A simple model for dislocations in crystals
10. Ferroelectric domain walls
11. Incommensurate phases
12. Solitons in magnetic systems
13. Solitons in Conducting polymers
14. Solitons in Bose-Einstein condensates
Part IV. Nonlinear Excitations in Biological Molecules: Introduction
15. Energy localisation and transfer in proteins
16. Nonlinear dynamics and statistical physics of DNA
Conclusion: Physical solitons: do they exist?
Part V. Appendices: A. Derivation of the KdV equation for surface hydrodynamic waves
B. Mechanics of a continuous medium
C. Coherent states of an harmonic oscillator
References
Index.
Preface
Part I. Different Classes of Solitons: Introduction
1. Nontopological solitons: the Korteweg-de Vries equation
2. Topological soltitons: sine-Gordon equation
3. Envelope solitons and nonlinear localisation: the nonlinear Schrödinger equation
4. The modelling process: ion acoustic waves in a plasma
Part II. Mathematical Methods for the Study of Solitons: Introduction
5. Linearisation around the soliton solution
6. Collective coordinate method
7. The inverse-scattering transform
Part III. Examples in Solid State and Atomic Physics: Introduction
8. The Ferm-Pasta-Ulam problem
9. A simple model for dislocations in crystals
10. Ferroelectric domain walls
11. Incommensurate phases
12. Solitons in magnetic systems
13. Solitons in Conducting polymers
14. Solitons in Bose-Einstein condensates
Part IV. Nonlinear Excitations in Biological Molecules: Introduction
15. Energy localisation and transfer in proteins
16. Nonlinear dynamics and statistical physics of DNA
Conclusion: Physical solitons: do they exist?
Part V. Appendices: A. Derivation of the KdV equation for surface hydrodynamic waves
B. Mechanics of a continuous medium
C. Coherent states of an harmonic oscillator
References
Index.
List of Portraits
Preface
Part I. Different Classes of Solitons: Introduction
1. Nontopological solitons: the Korteweg-de Vries equation
2. Topological soltitons: sine-Gordon equation
3. Envelope solitons and nonlinear localisation: the nonlinear Schrödinger equation
4. The modelling process: ion acoustic waves in a plasma
Part II. Mathematical Methods for the Study of Solitons: Introduction
5. Linearisation around the soliton solution
6. Collective coordinate method
7. The inverse-scattering transform
Part III. Examples in Solid State and Atomic Physics: Introduction
8. The Ferm-Pasta-Ulam problem
9. A simple model for dislocations in crystals
10. Ferroelectric domain walls
11. Incommensurate phases
12. Solitons in magnetic systems
13. Solitons in Conducting polymers
14. Solitons in Bose-Einstein condensates
Part IV. Nonlinear Excitations in Biological Molecules: Introduction
15. Energy localisation and transfer in proteins
16. Nonlinear dynamics and statistical physics of DNA
Conclusion: Physical solitons: do they exist?
Part V. Appendices: A. Derivation of the KdV equation for surface hydrodynamic waves
B. Mechanics of a continuous medium
C. Coherent states of an harmonic oscillator
References
Index.
Preface
Part I. Different Classes of Solitons: Introduction
1. Nontopological solitons: the Korteweg-de Vries equation
2. Topological soltitons: sine-Gordon equation
3. Envelope solitons and nonlinear localisation: the nonlinear Schrödinger equation
4. The modelling process: ion acoustic waves in a plasma
Part II. Mathematical Methods for the Study of Solitons: Introduction
5. Linearisation around the soliton solution
6. Collective coordinate method
7. The inverse-scattering transform
Part III. Examples in Solid State and Atomic Physics: Introduction
8. The Ferm-Pasta-Ulam problem
9. A simple model for dislocations in crystals
10. Ferroelectric domain walls
11. Incommensurate phases
12. Solitons in magnetic systems
13. Solitons in Conducting polymers
14. Solitons in Bose-Einstein condensates
Part IV. Nonlinear Excitations in Biological Molecules: Introduction
15. Energy localisation and transfer in proteins
16. Nonlinear dynamics and statistical physics of DNA
Conclusion: Physical solitons: do they exist?
Part V. Appendices: A. Derivation of the KdV equation for surface hydrodynamic waves
B. Mechanics of a continuous medium
C. Coherent states of an harmonic oscillator
References
Index.