- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book reviews recent experimental and theoretical evidence that the physical and structural properties of transition metal oxides may decisively be influenced by strong spin-orbit interactions that compete with comparable Coulomb, magnetic exchange, and crystalline electric field interactions.
Andere Kunden interessierten sich auch für
- Vladimir Z. Kresin (Hrsg.)Pair Correlations in Many-Fermion Systems186,99 €
- R. Kossowsky (ed.) / Siegfried Methfessel / Dieter WohllebenPhysics and Materials Science of High Temperature Superconductors111,99 €
- R. Kossowsky / Shyamalendu Bose / Vladimir Pan / Zafer Durusoy (Hgg.)Physics and Materials Science of Vortex States, Flux Pinning and Dynamics190,99 €
- Vladimir KresinSuperconducting State159,99 €
- Forrest J. RogersStrongly Coupled Plasma Physics42,99 €
- The Oxford Handbook of Small Superconductors215,99 €
- Forrest J. RogersStrongly Coupled Plasma Physics109,99 €
-
-
-
This book reviews recent experimental and theoretical evidence that the physical and structural properties of transition metal oxides may decisively be influenced by strong spin-orbit interactions that compete with comparable Coulomb, magnetic exchange, and crystalline electric field interactions.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Oxford University Press, USA
- Seitenzahl: 208
- Erscheinungstermin: 14. August 2021
- Englisch
- Abmessung: 249mm x 173mm x 15mm
- Gewicht: 576g
- ISBN-13: 9780199602025
- ISBN-10: 0199602026
- Artikelnr.: 61343203
- Verlag: Oxford University Press, USA
- Seitenzahl: 208
- Erscheinungstermin: 14. August 2021
- Englisch
- Abmessung: 249mm x 173mm x 15mm
- Gewicht: 576g
- ISBN-13: 9780199602025
- ISBN-10: 0199602026
- Artikelnr.: 61343203
Professor Gang Cao. Ph.D. in Physics, 1993, Temple University. Postdoc, Assistant Scientist, and Associate Scientist, 1993-2002, National High Magnetic Field Laboratory. Full Professor of Physics, 2016 - Present, University of Colorado at Boulder. Fellow of the Division of Condensed Matter Physics, American Physical Society, 2009. University Research Professor, University of Kentucky, 2009-2010. Albert D. & Elizabeth H. Kirwan Memorial Prize for Outstanding Contributions to Original Research or Creative Scholarship, University of Kentucky, 2015. Jack and Linda Gill Eminent Professor, University of Kentucky, 2011-2016. Over 250 publications. Professor Lance E. De Long. Graduated from University of Colorado, Boulder, B.A. in Physics, 1968. M.S. in Physics, University of California, San Diego, 1969. Ph.D. in Physics, 1977 (M. Brain Maple, Thesis Advisor). Associate Professor of Physics, 1979-2001; Full Professor of Physics, University of Kentucky, 2001-present. Scientist in Residence, Argonne National Laboratory Division of Materials Research and Technology, 1985-1986. Program Director, Low Temperature Physics, Division of Materials Research, National Science Foundation, 1988-1989. Visiting Scholar, University of California, San Diego, 2002. Co-Founder and Technical Consultant, LevTek Inc., 2000-2007. Fellow of the Division of Condensed Matter Physics, American Physical Society, 2006. Outstanding Referee for Journals of the American Physical Society, 2008. University Research Professor, University of Kentucky, 2015-16.
* Preface
* I. Fundamental Principles
* 1: Introduction
* 1.1. Overview
* 1.2. Outline of the Book
* 1.3. Fundamental Characteristics of 4d- and 5d-Transition Metal
Oxides
* 1.4. Crystal Fields and Chemical Aspects
* 1.5. Electron-Lattice Coupling
* 1.6. Spin-Orbit Interactions
* 1.7. The Dzyaloshinsky-Moriya Interaction
* 1.8. Phase Diagram of Correlated, Spin-Orbit-Coupled Matter
* 1.9. Absence of Topological States in 4d- and 5d-Transition Metal
Oxides
* Further Reading
* References
* II. Phenomena in 4d- and 5d-Transition Metal Oxides
* 2: Spin-Orbit Interactions in Ruddlesden-Popper Phases Srn+1IrnO3n+1
(n = 1, 2 and ?)
* 2.1. Overview
* 2.2. Novel Mott Insulator: Sr2IrO4
* 2.3. Borderline Insulator: Sr3Ir2O7
* 2.4. Metallic SrIrO3 and its Derivatives
* Further Reading
* References
* 3: Magnetic Frustration
* 3.1. Overview
* 3.2. Two-Dimensional Honeycomb Lattices: Na2IrO3 and Li2IrO3
* 3.3. Ruthenate Honeycomb Lattices: Na2RuO3 and Li2RuO3
* 3.4. Three-Dimensional Honeycomb Lattices: b-Li2IrO3 and g-Li2IrO3
and Hyperkagome Na4Ir3O8
* 3.5. Pyrochlore Iridates
* 3.6. Double-Perovskite Iridates with Ir5+(5d4) Ions: Absence of
Nonmagnetic Singlet Jeff = 0 State
* 3.7. Quantum Liquid in Unfrustrated Lattice Ba4Ir3O10
* Further Reading
* References
* 4: Lattice-Driven Ruthenates
* 4.1 Overview
* 4.2. Orbital and Magnetic Order in Doped Ca2RuO4
* 4.3. Unconventional Magneto-Transport Properties of Ca3Ru2O7
* 4.4. Pressure-Induced Transition from Interlayer Ferromagnetism to
Intralayer Antiferromagnetism in Sr4Ru3O10
* 4.5. General Remarks
* Further Reading
* References
* 5: Electric-Current-Control via Strong Spin-Orbit-Coupling
* 5.1. Overview
* 5.2. Ca2RuO4
* 5.3. Sr2IrO4
* 5.4. General Remarks
* Further Reading
* References
* III. Materials Synthesis
* 6: Single-Crystal Synthesis
* 6.1. Overview
* 6.2. Flux Technique
* 6.3. Optical Floating-Zone Technique
* 6.4. Field-Altering Technology
* Further Reading
* References
* Appendix: Synopses of Selected Experimental Techniques
* Subject Index
* Compound Index
* I. Fundamental Principles
* 1: Introduction
* 1.1. Overview
* 1.2. Outline of the Book
* 1.3. Fundamental Characteristics of 4d- and 5d-Transition Metal
Oxides
* 1.4. Crystal Fields and Chemical Aspects
* 1.5. Electron-Lattice Coupling
* 1.6. Spin-Orbit Interactions
* 1.7. The Dzyaloshinsky-Moriya Interaction
* 1.8. Phase Diagram of Correlated, Spin-Orbit-Coupled Matter
* 1.9. Absence of Topological States in 4d- and 5d-Transition Metal
Oxides
* Further Reading
* References
* II. Phenomena in 4d- and 5d-Transition Metal Oxides
* 2: Spin-Orbit Interactions in Ruddlesden-Popper Phases Srn+1IrnO3n+1
(n = 1, 2 and ?)
* 2.1. Overview
* 2.2. Novel Mott Insulator: Sr2IrO4
* 2.3. Borderline Insulator: Sr3Ir2O7
* 2.4. Metallic SrIrO3 and its Derivatives
* Further Reading
* References
* 3: Magnetic Frustration
* 3.1. Overview
* 3.2. Two-Dimensional Honeycomb Lattices: Na2IrO3 and Li2IrO3
* 3.3. Ruthenate Honeycomb Lattices: Na2RuO3 and Li2RuO3
* 3.4. Three-Dimensional Honeycomb Lattices: b-Li2IrO3 and g-Li2IrO3
and Hyperkagome Na4Ir3O8
* 3.5. Pyrochlore Iridates
* 3.6. Double-Perovskite Iridates with Ir5+(5d4) Ions: Absence of
Nonmagnetic Singlet Jeff = 0 State
* 3.7. Quantum Liquid in Unfrustrated Lattice Ba4Ir3O10
* Further Reading
* References
* 4: Lattice-Driven Ruthenates
* 4.1 Overview
* 4.2. Orbital and Magnetic Order in Doped Ca2RuO4
* 4.3. Unconventional Magneto-Transport Properties of Ca3Ru2O7
* 4.4. Pressure-Induced Transition from Interlayer Ferromagnetism to
Intralayer Antiferromagnetism in Sr4Ru3O10
* 4.5. General Remarks
* Further Reading
* References
* 5: Electric-Current-Control via Strong Spin-Orbit-Coupling
* 5.1. Overview
* 5.2. Ca2RuO4
* 5.3. Sr2IrO4
* 5.4. General Remarks
* Further Reading
* References
* III. Materials Synthesis
* 6: Single-Crystal Synthesis
* 6.1. Overview
* 6.2. Flux Technique
* 6.3. Optical Floating-Zone Technique
* 6.4. Field-Altering Technology
* Further Reading
* References
* Appendix: Synopses of Selected Experimental Techniques
* Subject Index
* Compound Index
* Preface
* I. Fundamental Principles
* 1: Introduction
* 1.1. Overview
* 1.2. Outline of the Book
* 1.3. Fundamental Characteristics of 4d- and 5d-Transition Metal
Oxides
* 1.4. Crystal Fields and Chemical Aspects
* 1.5. Electron-Lattice Coupling
* 1.6. Spin-Orbit Interactions
* 1.7. The Dzyaloshinsky-Moriya Interaction
* 1.8. Phase Diagram of Correlated, Spin-Orbit-Coupled Matter
* 1.9. Absence of Topological States in 4d- and 5d-Transition Metal
Oxides
* Further Reading
* References
* II. Phenomena in 4d- and 5d-Transition Metal Oxides
* 2: Spin-Orbit Interactions in Ruddlesden-Popper Phases Srn+1IrnO3n+1
(n = 1, 2 and ?)
* 2.1. Overview
* 2.2. Novel Mott Insulator: Sr2IrO4
* 2.3. Borderline Insulator: Sr3Ir2O7
* 2.4. Metallic SrIrO3 and its Derivatives
* Further Reading
* References
* 3: Magnetic Frustration
* 3.1. Overview
* 3.2. Two-Dimensional Honeycomb Lattices: Na2IrO3 and Li2IrO3
* 3.3. Ruthenate Honeycomb Lattices: Na2RuO3 and Li2RuO3
* 3.4. Three-Dimensional Honeycomb Lattices: b-Li2IrO3 and g-Li2IrO3
and Hyperkagome Na4Ir3O8
* 3.5. Pyrochlore Iridates
* 3.6. Double-Perovskite Iridates with Ir5+(5d4) Ions: Absence of
Nonmagnetic Singlet Jeff = 0 State
* 3.7. Quantum Liquid in Unfrustrated Lattice Ba4Ir3O10
* Further Reading
* References
* 4: Lattice-Driven Ruthenates
* 4.1 Overview
* 4.2. Orbital and Magnetic Order in Doped Ca2RuO4
* 4.3. Unconventional Magneto-Transport Properties of Ca3Ru2O7
* 4.4. Pressure-Induced Transition from Interlayer Ferromagnetism to
Intralayer Antiferromagnetism in Sr4Ru3O10
* 4.5. General Remarks
* Further Reading
* References
* 5: Electric-Current-Control via Strong Spin-Orbit-Coupling
* 5.1. Overview
* 5.2. Ca2RuO4
* 5.3. Sr2IrO4
* 5.4. General Remarks
* Further Reading
* References
* III. Materials Synthesis
* 6: Single-Crystal Synthesis
* 6.1. Overview
* 6.2. Flux Technique
* 6.3. Optical Floating-Zone Technique
* 6.4. Field-Altering Technology
* Further Reading
* References
* Appendix: Synopses of Selected Experimental Techniques
* Subject Index
* Compound Index
* I. Fundamental Principles
* 1: Introduction
* 1.1. Overview
* 1.2. Outline of the Book
* 1.3. Fundamental Characteristics of 4d- and 5d-Transition Metal
Oxides
* 1.4. Crystal Fields and Chemical Aspects
* 1.5. Electron-Lattice Coupling
* 1.6. Spin-Orbit Interactions
* 1.7. The Dzyaloshinsky-Moriya Interaction
* 1.8. Phase Diagram of Correlated, Spin-Orbit-Coupled Matter
* 1.9. Absence of Topological States in 4d- and 5d-Transition Metal
Oxides
* Further Reading
* References
* II. Phenomena in 4d- and 5d-Transition Metal Oxides
* 2: Spin-Orbit Interactions in Ruddlesden-Popper Phases Srn+1IrnO3n+1
(n = 1, 2 and ?)
* 2.1. Overview
* 2.2. Novel Mott Insulator: Sr2IrO4
* 2.3. Borderline Insulator: Sr3Ir2O7
* 2.4. Metallic SrIrO3 and its Derivatives
* Further Reading
* References
* 3: Magnetic Frustration
* 3.1. Overview
* 3.2. Two-Dimensional Honeycomb Lattices: Na2IrO3 and Li2IrO3
* 3.3. Ruthenate Honeycomb Lattices: Na2RuO3 and Li2RuO3
* 3.4. Three-Dimensional Honeycomb Lattices: b-Li2IrO3 and g-Li2IrO3
and Hyperkagome Na4Ir3O8
* 3.5. Pyrochlore Iridates
* 3.6. Double-Perovskite Iridates with Ir5+(5d4) Ions: Absence of
Nonmagnetic Singlet Jeff = 0 State
* 3.7. Quantum Liquid in Unfrustrated Lattice Ba4Ir3O10
* Further Reading
* References
* 4: Lattice-Driven Ruthenates
* 4.1 Overview
* 4.2. Orbital and Magnetic Order in Doped Ca2RuO4
* 4.3. Unconventional Magneto-Transport Properties of Ca3Ru2O7
* 4.4. Pressure-Induced Transition from Interlayer Ferromagnetism to
Intralayer Antiferromagnetism in Sr4Ru3O10
* 4.5. General Remarks
* Further Reading
* References
* 5: Electric-Current-Control via Strong Spin-Orbit-Coupling
* 5.1. Overview
* 5.2. Ca2RuO4
* 5.3. Sr2IrO4
* 5.4. General Remarks
* Further Reading
* References
* III. Materials Synthesis
* 6: Single-Crystal Synthesis
* 6.1. Overview
* 6.2. Flux Technique
* 6.3. Optical Floating-Zone Technique
* 6.4. Field-Altering Technology
* Further Reading
* References
* Appendix: Synopses of Selected Experimental Techniques
* Subject Index
* Compound Index