Plant Biotechnology and Genetics
Principles, Techniques, and Applications
Herausgeber: Stewart, C Neal
Plant Biotechnology and Genetics
Principles, Techniques, and Applications
Herausgeber: Stewart, C Neal
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Focused on basics and processes, this textbook teaches plant biology and agriculture applications with summary and discussion questions in each chapter. * Updates each chapter to reflect advances / changes since the first edition, for example: new biotechnology tools and advances, genomics and systems biology, intellectual property issues on DNA and patents, discussion of synthetic biology tools * Features autobiographical essays from eminent scientists, providing insight into plant biotechnology and careers * Has a companion website with color images from the book and PowerPoint(r) slides *…mehr
Andere Kunden interessierten sich auch für
- Yunbi XuMolecular Plant Breeding337,99 €
- Biotechnology and Plant Breeding86,99 €
- Biotechnology of Major Cereals208,99 €
- Crop Genetics and Breeding156,99 €
- Nigel G HalfordGenetically Modified Crops84,99 €
- Hong-Hwa Chen / Wen-Huei Chen (eds.)Orchid Biotechnology122,99 €
- Colin SandersonUnderstanding Genes and Gmos99,99 €
-
-
-
Focused on basics and processes, this textbook teaches plant biology and agriculture applications with summary and discussion questions in each chapter. * Updates each chapter to reflect advances / changes since the first edition, for example: new biotechnology tools and advances, genomics and systems biology, intellectual property issues on DNA and patents, discussion of synthetic biology tools * Features autobiographical essays from eminent scientists, providing insight into plant biotechnology and careers * Has a companion website with color images from the book and PowerPoint(r) slides * Links with author's own website that contains teaching slides and graphics for professors and students: http://plantsciences.utk.edu/pbg
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons / Wiley
- 2nd Revised edition
- Seitenzahl: 432
- Erscheinungstermin: 21. März 2016
- Englisch
- Abmessung: 261mm x 186mm x 32mm
- Gewicht: 1005g
- ISBN-13: 9781118820124
- ISBN-10: 1118820126
- Artikelnr.: 43000389
- Verlag: John Wiley & Sons / Wiley
- 2nd Revised edition
- Seitenzahl: 432
- Erscheinungstermin: 21. März 2016
- Englisch
- Abmessung: 261mm x 186mm x 32mm
- Gewicht: 1005g
- ISBN-13: 9781118820124
- ISBN-10: 1118820126
- Artikelnr.: 43000389
C. Neal Stewart, PhD, is Racheff Chair of Excellence in Plant Molecular Genetics and Professor, Department of Plant Sciences, University of Tennessee. In addition to the prior edition of Plant Biotechnology, he has written Weedy and Invasive Plant Genomics, Plant Transformation Technologies, and Research Ethics for Scientists: A Companion for Students , all published by Wiley.
Foreword xvi Contributors xviii Preface xx 1. The Impact of Biotechnology on Plant Agriculture 1 Graham Brookes 1.0 Chapter Summary and Objectives 1 1.0.1 Summary 1 1.0.2 Discussion Questions 1 1.1 Introduction 1 1.2 Cultivation of Biotechnology (GM) Crops 2 1.3 Why Farmers Use Biotech Crops 4 1.4 GM's Effects on Crop Production and Farming 7 1.5 How the Adoption of Plant Biotechnology has Impacted the Environment 8 1.5.1 Environmental Impacts from Changes in Insecticide and Herbicide Use 8 1.5.2 Impact on GHG Emissions 11 1.6 Conclusions 13 Life Box 1.1 Norman E. Borlaug 14 Life Box 1.2 Mary-Dell Chilton 15 Life Box 1.3 Robert T. Fraley 17 References 19 2. Mendelian Genetics and Plant Reproduction 20 Matthew D. Halfhill and Suzanne I. Warwick 2.0 Chapter Summary and Objectives 20 2.0.1 Summary 20 2.0.2 Discussion Questions 20 2.1 Overview of Genetics 20 2.2 Mendelian Genetics 23 2.2.1 Law of Segregation 26 2.2.2 Law of Independent Assortment 26 2.3 Mitosis and Meiosis 27 2.3.1 Mitosis 29 2.3.2 Meiosis 29 2.3.3 Recombination 30 2.3.4 Cytogenetic Analysis 31 2.3.5 Mendelian Genetics and Biotechnology Summary 32 2.4 Plant Reproductive Biology 32 2.4.1 History of Research in Plant Reproduction 32 2.4.2 Mating Systems 32 2.4.3 Hybridization and Polyploidy 36 2.4.4 Mating Systems and Biotechnology Summary 38 2.5 Conclusion 38 Life Box 2.1 Richard A. Dixon 39 Life Box 2.2 Michael L. Arnold 40 References 42 3. Plant Breeding 43 Nicholas A. Tinker and Elroy R. Cober 3.0 Chapter Summary and Objectives 43 3.0.1 Summary 43 3.0.2 Discussion Questions 43 3.1 Introduction 44 3.2 Central Concepts in Plant Breeding 45 3.2.1 Simple vs. Complex Inheritance 45 3.2.2 Phenotype vs. Genotype 46 3.2.3 Mating Systems, Varieties, Landraces, and Pure Lines 47 3.2.4 Other Topics in Population and Quantitative Genetics 49 3.2.5 The Value of a Plant Variety Depends on Many Traits 51 3.2.6 A Plant Variety Must Be Environmentally Adapted 51 3.2.7 Plant Breeding is a Numbers Game 52 3.2.8 Plant Breeding is an Iterative and Collaborative Process 52 3.2.9 Diversity, Adaptation, and Ideotypes 53 3.2.10 Other Considerations 56 3.3 Objectives in Plant Breeding 56 3.4 Methods of Plant Breeding 57 3.4.1 Methods of Hybridization 58 3.4.2 Self
Pollinated Species 58 3.4.3 Outcrossing Species 63 3.4.4 Clonally Propagated Species 67 3.5 Breeding Enhancements 68 3.5.1 Doubled Haploidy 68 3.5.2 Marker
Assisted Selection 68 3.5.3 Mutation Breeding 70 3.5.4 Apomixis 71 3.6 Conclusions 71 Life Box 3.1 Gurdev Singh Khush 72 Life Box 3.2 P. Stephen Baenziger 74 Life Box 3.3 Steven D. Tanksley 75 References 77 4. Plant Development and Physiology 78 Glenda E. Gillaspy 4.0 Chapter Summary and Objectives 78 4.0.1 Summary 78 4.0.2 Discussion Questions 78 4.1 Plant Anatomy and Morphology 79 4.2 Embryogenesis and Seed Germination 80 4.2.1 Gametogenesis 80 4.2.2 Fertilization 82 4.2.3 Fruit Development 83 4.2.4 Embryogenesis 83 4.2.5 Seed Germination 85 4.2.6 Photomorphogenesis 85 4.3 Meristems 86 4.3.1 Shoot Apical Meristem 86 4.3.2 Root Apical Meristem and Root Development 88 4.4 Leaf Development 89 4.4.1 Leaf Structure 89 4.4.2 Leaf Development Patterns 91 4.5 Flower Development 92 4.5.1 Floral Evocation 92 4.5.2 Floral Organ Identity and the ABC Model 93 4.6 Hormone Physiology and Signal Transduction 94 4.6.1 Seven Plant Hormones and Their Actions 94 4.6.2 Plant Hormone Signal Transduction 96 4.7 Conclusions 100 Life Box 4.1 Deborah Delmer 100 Life Box 4.2 Natasha Raikhel 102 Life Box 4.3 Brenda S.J. Winkel 103 References 105 5. Tissue Culture: The Manipulation of Plant Development 107 Vinitha Cardoza 5.0 Chapter Summary and Objectives 107 5.0.1 Summary 107 5.0.2 Discussion Questions 107 5.1 Introduction 107 5.2 History of Tissue Culture 108 5.3 Media and Culture Conditions 109 5.3.1 Basal Media 109 5.3.2 Growth Regulators 110 5.4 Sterile Technique 111 5.4.1 Clean Equipment 111 5.4.2 Surface Sterilization of Explants 112 5.5 Culture Conditions and Vessels 113 5.6 Culture Types and Their Uses 113 5.6.1 Callus and Somatic Embryo Culture 113 5.6.2 Cell Suspension Cultures 117 5.6.3 Anther/Microspore Culture 119 5.6.4 Protoplast Culture 119 5.6.5 Somatic Hybridization 120 5.6.6 Embryo Culture 120 5.6.7 Meristem Culture 121 5.7 Regeneration Methods of Plants in Culture 121 5.7.1 Organogenesis 121 5.7.2 Somatic Embryogenesis 123 5.7.3 Synthetic Seeds 123 5.8 Rooting of Shoots 123 5.9 Acclimation 124 5.10 Problems that can Occur in Tissue Culture 124 5.10.1 Culture Contamination 124 5.10.2 Hyperhydricity 124 5.10.3 Browning of Explants 124 5.11 Conclusions 125 Acknowledgments 125 Life Box 5.1 Glenn Burton Collins 125 Life Box 5.2 Martha S. Wright 127 Life Box 5.3 Vinitha Cardoza 128 References 129 6. Molecular Genetics of Gene Expression 133 Maria Gallo and Alison K. Flynn 6.0 Chapter Summary and Objectives 133 6.0.1 Summary 133 6.0.2 Discussion Questions 133 6.1 The Gene 133 6.1.1 DNA Coding for a Protein via the Gene 133 6.1.2 DNA as a Polynucleotide 134 6.2 DNA Packaging into Eukaryotic Chromosomes 134 6.3 Transcription 135 6.3.1 Transcription of DNA to Produce Messenger Ribonucleic Acid 135 6.3.2 Transcription Factors 140 6.3.3 Coordinated Regulation of Gene Expression 140 6.3.4 Chromatin as an Important Regulator of Transcription 141 6.3.5 Regulation of Gene Expression by DNA Methylation 142 6.3.6 RNA
Directed Gene Silencing by Small RNAs 143 6.3.7 Processing to Produce Mature mRNA 143 6.4 Translation 144 6.4.1 Initiation of Translation 147 6.4.2 Elongation Phase of Translation 147 6.4.3 Translation Termination 147 6.5 Protein Postranslational Modification 147 Life Box 6.1 Maarten Chrispeels 150 Life Box 6.2 David W. Ow 152 References 154 7. Plant Systems Biology 155 Wusheng Liu and C. Neal Stewart, Jr. 7.0 Chapter Summary and Objectives 155 7.0.1 Summary 155 7.0.2 Discussion Questions 155 7.1 Introduction 155 7.2 Defining Plant Systems Biology 157 7.3 Properties of Plant Systems 158 7.4 A Framework of Plant Systems Biology 159 7.4.1 Comprehensive Quantitative Data Sets 160 7.4.2 Network Analysis 161 7.4.3 Dynamic Modeling 161 7.4.4 Exploring Systems and Models Toward Refinement 161 7.5 Disciplines and Enabling Tools of Plant Systems Biology 162 7.5.1 Plant Genomics 162 7.5.2 Plant Transcriptomics 166 7.5.3 Plant Proteomics 168 7.5.4 Plant Metabolomics 170 7.5.5 Bioinformatics 172 7.6 Conclusions 176 Life Box 7.1 C. Robin Buell 177 Life Box 7.2 Zhenbiao Yang 178 References 179 8. Recombinant DNA, Vector Design, and Construction 181 Mark D. Curtis and David G.J. Mann 8.0 Chapter Summary and Objectives 181 8.0.1 Summary 181 8.0.2 Discussion Questions 181 8.1 DNA Modification 181 8.2 DNA Vectors 186 8.2.1 DNA Vectors for Plant Transformation 188 8.2.2 Components for Efficient Gene Expression in Plants 190 8.3 Greater Demands Lead to Innovation 192 8.3.1 "Modern" Cloning Strategies 192 8.4 Vector Design 197 8.4.1 Vectors for High
Throughput Functional Analysis 197 8.4.2 Vectors for Gene Down
Regulation Using RNA Interference (RNAi) 199 8.4.3 Expression Vectors 199 8.4.4 Vectors for Promoter Analysis 200 8.4.5 Vectors Derived from Plant Sequences 201 8.4.6 Vectors for Multigenic Traits 203 8.5 Targeted Transgene Insertions 204 8.6 Prospects 205 Life Box 8.1 Wayne Parrott 206 Life Box 8.2 David Mann 207 References 208 9. Genes and Traits of Interest 211 Kenneth L. Korth 9.0 Chapter Summary and Objectives 211 9.0.1 Summary 211 9.0.2 Discussion Questions 211 9.1 Introduction 212 9.2 Identifying Genes of Interest via Genomics and other Omics Technologies 212 9.3 Traits for Improved Crop Production Using Transgenics 214 9.3.1 Herbicide Resistance 215 9.3.2 Insect Resistance 218 9.3.3 Pathogen Resistance 220 9.3.4 Traits for Improved Products and Food Quality 222 9.4 Conclusion 227 Life Box 9.1 Dennis Gonsalves 227 Life Box 9.2 Ingo Potrykus 229 References 231 10. Promoters and Marker Genes 233 Wusheng Liu, Brian Miki and C. Neal Stewart, Jr. 10.0 Chapter Summary and Objectives 233 10.0.1 Summary 233 10.0.2 Discussion Questions 233 10.1 Introduction 234 10.2 Promoters 234 10.2.1 Constitutive Promoters 235 10.2.2 Tissue
Specific Promoters 236 10.2.3 Inducible Promoters 237 10.2.4 Synthetic Promoters 239 10.3 Marker Genes 239 10.3.1 Selectable Marker Genes 242 10.3.2 Reporter Genes 246 10.4 Marker
Free Strategies 250 10.5 Conclusions 254 Life Box 10.1 Fredy Altpeter 255 Life Box 10.2 Taniya Dhillon 257 References 259 11. Transgenic Plant Production 262 John J. Finer 11.0 Chapter Summary and Objectives 262 11.0.1 Summary 262 11.0.2 Discussion Questions 262 11.1 Overview of Plant Transformation 263 11.1.1 Introduction 263 11.1.2 Basic Components for Successful Gene Transfer to Plant Cells 263 11.2 Agrobacterium Tumefaciens 265 11.2.1 History of Agrobacterium Research 266 11.2.2 Use of the T
DNA Transfer Process for Transformation 268 11.2.3 Optimizing Delivery and Broadening the Taxonomical Range of Targets 269 11.2.4 Strain and Cultivar Compatibility 270 11.2.5 Agroinfiltration 271 11.2.6 Arabidopsis Floral Dip (Clough and Bent 1998) 271 11.3 Particle Bombardment 272 11.3.1 History of Particle Bombardment 272 11.3.2 The Fate of the Introduced DNA into Plant Cells 274 11.3.3 The Power and Problems of Direct DNA Introduction 275 11.3.4 Improvements in the Control of Transgene Expression 276 11.4 Other Methods of Transformation 276 11.4.1 The Need for Additional Technologies 276 11.4.2 Protoplasts 277 11.4.3 Whole Tissue Electroporation 278 11.4.4 Silicon Carbide Whiskers 278 11.4.5 Viral Vectors 278 11.4.6 Laser Micropuncture 279 11.4.7 Nanofiber Arrays 279 11.5 The Rush to Publish 280 11.5.1 Controversial Reports of Plant Transformation 280 11.5.2 Criteria to Consider in Judging Novel Plant Transformation Methods 284 11.6 A Look to the Future 286 Life Box 11.1 Ted Klein 286 Life Box 11.2 John Finer 287 Life Box 11.3 Kan Wang 289 References 291 12. Analysis of Transgenic Plants 293 C. Neal Stewart, Jr. 12.0 Chapter Summary and Objectives 293 12.0.1 Summary 293 12.0.2 Discussion Questions 293 12.1 Essential Elements of Transgenic Plant Analysis 293 12.2 Assays for Transgenicity, Insert Copy Number, and Segregation 295 12.2.1 Polymerase Chain Reaction 295 12.2.2 Quantitative PCR 295 12.2.3 Southern (DNA) Blot Analysis 296 12.2.4 Segregation Analysis of Progeny 300 12.3 Transgene Expression 301 12.3.1 Transcript Abundance 301 12.3.2 Protein Abundance 302 12.4 Knockdown or Knockout Analysis Rather than Overexpression Analysis 304 12.5 The Relationship Between Molecular Analyses and Phenotype 305 Life Box 12.1 Hong S. Moon 305 Life Box 12.2 Neal Stewart 306 Life Box 12.3 Nancy A. Reichert 308 References 310 13. Regulations and Biosafety 311 Alan McHughen 13.0 Chapter Summary and Objectives 311 13.0.1 Summary 311 13.0.2 Discussion Questions 311 13.1 Introduction 311 13.2 History of Genetic Engineering and Its Regulation 313 13.3 Regulation of GM Plants 315 13.3.1 New Technologies 316 13.3.2 US Regulatory Agencies and Regulations 317 13.3.3 European Union 319 13.3.4 Canada 321 13.3.5 International Perspectives 321 13.4 Regulatory Flaws and Invalid Assumptions 323 13.4.1 Conventional Plant Breeding has Higher Safety than Biotechnology
Derived GM 324 13.4.2 GMOs Should Be Regulated Because They're GMOs and Un
natural 324 13.4.3 Even though Product Risk is Important, It is Reasonable that Process (GMO) Should Trigger Regulation 324 13.4.4 Since GM Technology is New, It Might Be Hazardous and Should Be Regulated 325 13.4.5 If We Have a Valid Scientific Test, Then It Should Be Used in Regulations 326 13.4.6 Better Safe than Sorry: Overregulation is Better than Underregulation 326 13.5 Conclusion 327 Life Box 13.1 Alan McHughen 328 Life Box 13.2 Raymond D. Shillito 329 References 331 14. Field Testing of Transgenic Plants 333 Detlef Bartsch, Achim Gathmann, Christiane Saeglitz and Arti Sinha 14.0 Chapter Summary and Objectives 333 14.0.1 Summary 333 14.0.2 Discussion Questions 333 14.1 Introduction 334 14.2 Environmental Risk Assessment Process 334 14.2.1 Initial Evaluation (Era Step 1) 334 14.2.2 Problem Formulation (ERA Step 2) 335 14.2.3 Controlled Experiments and Gathering of Information (ERA Step 3) 335 14.2.4 Risk Evaluation (ERA Step 4) 335 14.2.5 Progression through a Tiered Risk Assessment 335 14.3 An Example Risk Assessment: The Case of Bt Maize 336 14.3.1 Effect of Bt Maize Pollen on Nontarget Caterpillars 337 14.3.2 Statistical Analysis and Relevance for Predicting Potential Adverse Effects on Butterflies 339 14.4 Proof of Safety Versus Proof of Hazard 340 14.5 Modeling the Risk Effects on a Greater Scale 340 14.6 Proof of Benefits: Agronomic Performance 341 14.7 Conclusions 342 Life Box 14.1 Tony Shelton 343 Life Box 14.2 Detlef Bartsch 344 References 346 15. Intellectual Property in Agricultural Biotechnology: Strategies for Open Access 347 Monica Alandete
Saez, Cecilia Chi
Ham, Gregory Graff, Sara Boettiger and Alan B. Bennett 15.0 Chapter Summary and Objectives 347 15.0.1 Summary 347 15.0.2 Discussion Questions 347 15.1 Intellectual Property and Agricultural Biotechnology 348 15.1.1 What is Intellectual Property? 349 15.1.2 What is a Patent? 349 15.2 The Relationship Between Intellectual Property and Agricultural Research 351 15.3 Patenting Plant Biotechnology: Has an Anti
Commons Developed? 352 15.3.1 Transformation Methods 352 15.3.2 Selectable Markers 353 15.3.3 Promoters 354 15.3.4 Subcellular Localization 354 15.3.5 The Importance of Combining IP
Protected Components in Transgenic Crops 355 15.4 What is Freedom to Operate (FTO)? 355 15.4.1 The Importance of FTO 355 15.4.2 FTO Case Study: the Tomato E8 Promoter 356 15.5 Strategies for Open Access 358 15.6 Conclusions 359 Life Box 15.1 Alan Bennett 360 Life Box 15.2 Maud Hinchee 361 References 363 16. Why Transgenic Plants Are So Controversial 366 Jennifer Trumbo and Douglas Powell 16.0 Chapter Summary and Objectives 366 16.0.1 Summary 366 16.0.2 Discussion Questions 366 16.1 Introduction 367 16.1.1 The Frankenstein Backdrop 367 16.1.2 Agricultural Innovations and Questions 367 16.2 Perceptions of Risk 368 16.3 Responses of Fear 370 16.4 Feeding Fear: Case Studies 372 16.4.1 Pusztai's Potatoes 372 16.4.2 Monarch Butterfly Flap 373 16.5 How Many Benefits are Enough? 373 16.6 Continuing Debates 375 16.6.1 Process vs. Product 375 16.6.2 Health Concerns 375 16.6.3 Environmental Concerns 376 16.6.4 Consumer Choice 376 16.7 Business and Control 376 16.8 Conclusions 377 Life Box 16.1 Tony Conner 378 Life Box 16.2 Channapatna S. Prakash 379 References 381 17. The Future: Advanced Plant Biotechnology, Genome Editing, and Synthetic Biology 383 Wusheng Liu and C. Neal Stewart, Jr. 17.0 Chapter Summary and Objectives 383 17.0.1 Summary 383 17.0.2 Discussion Questions 383 17.1 Introduction: The Birth of Synthetic Biology 384 17.2 Defining Synthetic Biology for Plants 385 17.2.1 Design Cycles of Synthetic Biology 385 17.2.2 Foundations of Synthetic Biology 387 17.2.3 Components of Plant Synthetic Biology 388 17.3 Enabling Tools for Plant Synthetic Biology 389 17.3.1 Computer
Aided Design 389 17.3.2 Synthetic Promoters 389 17.3.3 Precise Genome Editing 389 17.4 Synthetic Biology Applications in Plants 393 17.4.1 Synthetic Inducible Promoters 394 17.4.2 A Device for Monitoring Auxin
Induced Plant IAA Degradation in Yeast 395 17.4.3 Circuits for Phytosensing of Explosives or Bacterial Pathogens in Transgenic Plants 395 17.5 Conclusions 397 Life Box 17.1 Joshua Yuan 397 Life Box 17.2 Wusheng Liu 398 References 399 Index 402
Pollinated Species 58 3.4.3 Outcrossing Species 63 3.4.4 Clonally Propagated Species 67 3.5 Breeding Enhancements 68 3.5.1 Doubled Haploidy 68 3.5.2 Marker
Assisted Selection 68 3.5.3 Mutation Breeding 70 3.5.4 Apomixis 71 3.6 Conclusions 71 Life Box 3.1 Gurdev Singh Khush 72 Life Box 3.2 P. Stephen Baenziger 74 Life Box 3.3 Steven D. Tanksley 75 References 77 4. Plant Development and Physiology 78 Glenda E. Gillaspy 4.0 Chapter Summary and Objectives 78 4.0.1 Summary 78 4.0.2 Discussion Questions 78 4.1 Plant Anatomy and Morphology 79 4.2 Embryogenesis and Seed Germination 80 4.2.1 Gametogenesis 80 4.2.2 Fertilization 82 4.2.3 Fruit Development 83 4.2.4 Embryogenesis 83 4.2.5 Seed Germination 85 4.2.6 Photomorphogenesis 85 4.3 Meristems 86 4.3.1 Shoot Apical Meristem 86 4.3.2 Root Apical Meristem and Root Development 88 4.4 Leaf Development 89 4.4.1 Leaf Structure 89 4.4.2 Leaf Development Patterns 91 4.5 Flower Development 92 4.5.1 Floral Evocation 92 4.5.2 Floral Organ Identity and the ABC Model 93 4.6 Hormone Physiology and Signal Transduction 94 4.6.1 Seven Plant Hormones and Their Actions 94 4.6.2 Plant Hormone Signal Transduction 96 4.7 Conclusions 100 Life Box 4.1 Deborah Delmer 100 Life Box 4.2 Natasha Raikhel 102 Life Box 4.3 Brenda S.J. Winkel 103 References 105 5. Tissue Culture: The Manipulation of Plant Development 107 Vinitha Cardoza 5.0 Chapter Summary and Objectives 107 5.0.1 Summary 107 5.0.2 Discussion Questions 107 5.1 Introduction 107 5.2 History of Tissue Culture 108 5.3 Media and Culture Conditions 109 5.3.1 Basal Media 109 5.3.2 Growth Regulators 110 5.4 Sterile Technique 111 5.4.1 Clean Equipment 111 5.4.2 Surface Sterilization of Explants 112 5.5 Culture Conditions and Vessels 113 5.6 Culture Types and Their Uses 113 5.6.1 Callus and Somatic Embryo Culture 113 5.6.2 Cell Suspension Cultures 117 5.6.3 Anther/Microspore Culture 119 5.6.4 Protoplast Culture 119 5.6.5 Somatic Hybridization 120 5.6.6 Embryo Culture 120 5.6.7 Meristem Culture 121 5.7 Regeneration Methods of Plants in Culture 121 5.7.1 Organogenesis 121 5.7.2 Somatic Embryogenesis 123 5.7.3 Synthetic Seeds 123 5.8 Rooting of Shoots 123 5.9 Acclimation 124 5.10 Problems that can Occur in Tissue Culture 124 5.10.1 Culture Contamination 124 5.10.2 Hyperhydricity 124 5.10.3 Browning of Explants 124 5.11 Conclusions 125 Acknowledgments 125 Life Box 5.1 Glenn Burton Collins 125 Life Box 5.2 Martha S. Wright 127 Life Box 5.3 Vinitha Cardoza 128 References 129 6. Molecular Genetics of Gene Expression 133 Maria Gallo and Alison K. Flynn 6.0 Chapter Summary and Objectives 133 6.0.1 Summary 133 6.0.2 Discussion Questions 133 6.1 The Gene 133 6.1.1 DNA Coding for a Protein via the Gene 133 6.1.2 DNA as a Polynucleotide 134 6.2 DNA Packaging into Eukaryotic Chromosomes 134 6.3 Transcription 135 6.3.1 Transcription of DNA to Produce Messenger Ribonucleic Acid 135 6.3.2 Transcription Factors 140 6.3.3 Coordinated Regulation of Gene Expression 140 6.3.4 Chromatin as an Important Regulator of Transcription 141 6.3.5 Regulation of Gene Expression by DNA Methylation 142 6.3.6 RNA
Directed Gene Silencing by Small RNAs 143 6.3.7 Processing to Produce Mature mRNA 143 6.4 Translation 144 6.4.1 Initiation of Translation 147 6.4.2 Elongation Phase of Translation 147 6.4.3 Translation Termination 147 6.5 Protein Postranslational Modification 147 Life Box 6.1 Maarten Chrispeels 150 Life Box 6.2 David W. Ow 152 References 154 7. Plant Systems Biology 155 Wusheng Liu and C. Neal Stewart, Jr. 7.0 Chapter Summary and Objectives 155 7.0.1 Summary 155 7.0.2 Discussion Questions 155 7.1 Introduction 155 7.2 Defining Plant Systems Biology 157 7.3 Properties of Plant Systems 158 7.4 A Framework of Plant Systems Biology 159 7.4.1 Comprehensive Quantitative Data Sets 160 7.4.2 Network Analysis 161 7.4.3 Dynamic Modeling 161 7.4.4 Exploring Systems and Models Toward Refinement 161 7.5 Disciplines and Enabling Tools of Plant Systems Biology 162 7.5.1 Plant Genomics 162 7.5.2 Plant Transcriptomics 166 7.5.3 Plant Proteomics 168 7.5.4 Plant Metabolomics 170 7.5.5 Bioinformatics 172 7.6 Conclusions 176 Life Box 7.1 C. Robin Buell 177 Life Box 7.2 Zhenbiao Yang 178 References 179 8. Recombinant DNA, Vector Design, and Construction 181 Mark D. Curtis and David G.J. Mann 8.0 Chapter Summary and Objectives 181 8.0.1 Summary 181 8.0.2 Discussion Questions 181 8.1 DNA Modification 181 8.2 DNA Vectors 186 8.2.1 DNA Vectors for Plant Transformation 188 8.2.2 Components for Efficient Gene Expression in Plants 190 8.3 Greater Demands Lead to Innovation 192 8.3.1 "Modern" Cloning Strategies 192 8.4 Vector Design 197 8.4.1 Vectors for High
Throughput Functional Analysis 197 8.4.2 Vectors for Gene Down
Regulation Using RNA Interference (RNAi) 199 8.4.3 Expression Vectors 199 8.4.4 Vectors for Promoter Analysis 200 8.4.5 Vectors Derived from Plant Sequences 201 8.4.6 Vectors for Multigenic Traits 203 8.5 Targeted Transgene Insertions 204 8.6 Prospects 205 Life Box 8.1 Wayne Parrott 206 Life Box 8.2 David Mann 207 References 208 9. Genes and Traits of Interest 211 Kenneth L. Korth 9.0 Chapter Summary and Objectives 211 9.0.1 Summary 211 9.0.2 Discussion Questions 211 9.1 Introduction 212 9.2 Identifying Genes of Interest via Genomics and other Omics Technologies 212 9.3 Traits for Improved Crop Production Using Transgenics 214 9.3.1 Herbicide Resistance 215 9.3.2 Insect Resistance 218 9.3.3 Pathogen Resistance 220 9.3.4 Traits for Improved Products and Food Quality 222 9.4 Conclusion 227 Life Box 9.1 Dennis Gonsalves 227 Life Box 9.2 Ingo Potrykus 229 References 231 10. Promoters and Marker Genes 233 Wusheng Liu, Brian Miki and C. Neal Stewart, Jr. 10.0 Chapter Summary and Objectives 233 10.0.1 Summary 233 10.0.2 Discussion Questions 233 10.1 Introduction 234 10.2 Promoters 234 10.2.1 Constitutive Promoters 235 10.2.2 Tissue
Specific Promoters 236 10.2.3 Inducible Promoters 237 10.2.4 Synthetic Promoters 239 10.3 Marker Genes 239 10.3.1 Selectable Marker Genes 242 10.3.2 Reporter Genes 246 10.4 Marker
Free Strategies 250 10.5 Conclusions 254 Life Box 10.1 Fredy Altpeter 255 Life Box 10.2 Taniya Dhillon 257 References 259 11. Transgenic Plant Production 262 John J. Finer 11.0 Chapter Summary and Objectives 262 11.0.1 Summary 262 11.0.2 Discussion Questions 262 11.1 Overview of Plant Transformation 263 11.1.1 Introduction 263 11.1.2 Basic Components for Successful Gene Transfer to Plant Cells 263 11.2 Agrobacterium Tumefaciens 265 11.2.1 History of Agrobacterium Research 266 11.2.2 Use of the T
DNA Transfer Process for Transformation 268 11.2.3 Optimizing Delivery and Broadening the Taxonomical Range of Targets 269 11.2.4 Strain and Cultivar Compatibility 270 11.2.5 Agroinfiltration 271 11.2.6 Arabidopsis Floral Dip (Clough and Bent 1998) 271 11.3 Particle Bombardment 272 11.3.1 History of Particle Bombardment 272 11.3.2 The Fate of the Introduced DNA into Plant Cells 274 11.3.3 The Power and Problems of Direct DNA Introduction 275 11.3.4 Improvements in the Control of Transgene Expression 276 11.4 Other Methods of Transformation 276 11.4.1 The Need for Additional Technologies 276 11.4.2 Protoplasts 277 11.4.3 Whole Tissue Electroporation 278 11.4.4 Silicon Carbide Whiskers 278 11.4.5 Viral Vectors 278 11.4.6 Laser Micropuncture 279 11.4.7 Nanofiber Arrays 279 11.5 The Rush to Publish 280 11.5.1 Controversial Reports of Plant Transformation 280 11.5.2 Criteria to Consider in Judging Novel Plant Transformation Methods 284 11.6 A Look to the Future 286 Life Box 11.1 Ted Klein 286 Life Box 11.2 John Finer 287 Life Box 11.3 Kan Wang 289 References 291 12. Analysis of Transgenic Plants 293 C. Neal Stewart, Jr. 12.0 Chapter Summary and Objectives 293 12.0.1 Summary 293 12.0.2 Discussion Questions 293 12.1 Essential Elements of Transgenic Plant Analysis 293 12.2 Assays for Transgenicity, Insert Copy Number, and Segregation 295 12.2.1 Polymerase Chain Reaction 295 12.2.2 Quantitative PCR 295 12.2.3 Southern (DNA) Blot Analysis 296 12.2.4 Segregation Analysis of Progeny 300 12.3 Transgene Expression 301 12.3.1 Transcript Abundance 301 12.3.2 Protein Abundance 302 12.4 Knockdown or Knockout Analysis Rather than Overexpression Analysis 304 12.5 The Relationship Between Molecular Analyses and Phenotype 305 Life Box 12.1 Hong S. Moon 305 Life Box 12.2 Neal Stewart 306 Life Box 12.3 Nancy A. Reichert 308 References 310 13. Regulations and Biosafety 311 Alan McHughen 13.0 Chapter Summary and Objectives 311 13.0.1 Summary 311 13.0.2 Discussion Questions 311 13.1 Introduction 311 13.2 History of Genetic Engineering and Its Regulation 313 13.3 Regulation of GM Plants 315 13.3.1 New Technologies 316 13.3.2 US Regulatory Agencies and Regulations 317 13.3.3 European Union 319 13.3.4 Canada 321 13.3.5 International Perspectives 321 13.4 Regulatory Flaws and Invalid Assumptions 323 13.4.1 Conventional Plant Breeding has Higher Safety than Biotechnology
Derived GM 324 13.4.2 GMOs Should Be Regulated Because They're GMOs and Un
natural 324 13.4.3 Even though Product Risk is Important, It is Reasonable that Process (GMO) Should Trigger Regulation 324 13.4.4 Since GM Technology is New, It Might Be Hazardous and Should Be Regulated 325 13.4.5 If We Have a Valid Scientific Test, Then It Should Be Used in Regulations 326 13.4.6 Better Safe than Sorry: Overregulation is Better than Underregulation 326 13.5 Conclusion 327 Life Box 13.1 Alan McHughen 328 Life Box 13.2 Raymond D. Shillito 329 References 331 14. Field Testing of Transgenic Plants 333 Detlef Bartsch, Achim Gathmann, Christiane Saeglitz and Arti Sinha 14.0 Chapter Summary and Objectives 333 14.0.1 Summary 333 14.0.2 Discussion Questions 333 14.1 Introduction 334 14.2 Environmental Risk Assessment Process 334 14.2.1 Initial Evaluation (Era Step 1) 334 14.2.2 Problem Formulation (ERA Step 2) 335 14.2.3 Controlled Experiments and Gathering of Information (ERA Step 3) 335 14.2.4 Risk Evaluation (ERA Step 4) 335 14.2.5 Progression through a Tiered Risk Assessment 335 14.3 An Example Risk Assessment: The Case of Bt Maize 336 14.3.1 Effect of Bt Maize Pollen on Nontarget Caterpillars 337 14.3.2 Statistical Analysis and Relevance for Predicting Potential Adverse Effects on Butterflies 339 14.4 Proof of Safety Versus Proof of Hazard 340 14.5 Modeling the Risk Effects on a Greater Scale 340 14.6 Proof of Benefits: Agronomic Performance 341 14.7 Conclusions 342 Life Box 14.1 Tony Shelton 343 Life Box 14.2 Detlef Bartsch 344 References 346 15. Intellectual Property in Agricultural Biotechnology: Strategies for Open Access 347 Monica Alandete
Saez, Cecilia Chi
Ham, Gregory Graff, Sara Boettiger and Alan B. Bennett 15.0 Chapter Summary and Objectives 347 15.0.1 Summary 347 15.0.2 Discussion Questions 347 15.1 Intellectual Property and Agricultural Biotechnology 348 15.1.1 What is Intellectual Property? 349 15.1.2 What is a Patent? 349 15.2 The Relationship Between Intellectual Property and Agricultural Research 351 15.3 Patenting Plant Biotechnology: Has an Anti
Commons Developed? 352 15.3.1 Transformation Methods 352 15.3.2 Selectable Markers 353 15.3.3 Promoters 354 15.3.4 Subcellular Localization 354 15.3.5 The Importance of Combining IP
Protected Components in Transgenic Crops 355 15.4 What is Freedom to Operate (FTO)? 355 15.4.1 The Importance of FTO 355 15.4.2 FTO Case Study: the Tomato E8 Promoter 356 15.5 Strategies for Open Access 358 15.6 Conclusions 359 Life Box 15.1 Alan Bennett 360 Life Box 15.2 Maud Hinchee 361 References 363 16. Why Transgenic Plants Are So Controversial 366 Jennifer Trumbo and Douglas Powell 16.0 Chapter Summary and Objectives 366 16.0.1 Summary 366 16.0.2 Discussion Questions 366 16.1 Introduction 367 16.1.1 The Frankenstein Backdrop 367 16.1.2 Agricultural Innovations and Questions 367 16.2 Perceptions of Risk 368 16.3 Responses of Fear 370 16.4 Feeding Fear: Case Studies 372 16.4.1 Pusztai's Potatoes 372 16.4.2 Monarch Butterfly Flap 373 16.5 How Many Benefits are Enough? 373 16.6 Continuing Debates 375 16.6.1 Process vs. Product 375 16.6.2 Health Concerns 375 16.6.3 Environmental Concerns 376 16.6.4 Consumer Choice 376 16.7 Business and Control 376 16.8 Conclusions 377 Life Box 16.1 Tony Conner 378 Life Box 16.2 Channapatna S. Prakash 379 References 381 17. The Future: Advanced Plant Biotechnology, Genome Editing, and Synthetic Biology 383 Wusheng Liu and C. Neal Stewart, Jr. 17.0 Chapter Summary and Objectives 383 17.0.1 Summary 383 17.0.2 Discussion Questions 383 17.1 Introduction: The Birth of Synthetic Biology 384 17.2 Defining Synthetic Biology for Plants 385 17.2.1 Design Cycles of Synthetic Biology 385 17.2.2 Foundations of Synthetic Biology 387 17.2.3 Components of Plant Synthetic Biology 388 17.3 Enabling Tools for Plant Synthetic Biology 389 17.3.1 Computer
Aided Design 389 17.3.2 Synthetic Promoters 389 17.3.3 Precise Genome Editing 389 17.4 Synthetic Biology Applications in Plants 393 17.4.1 Synthetic Inducible Promoters 394 17.4.2 A Device for Monitoring Auxin
Induced Plant IAA Degradation in Yeast 395 17.4.3 Circuits for Phytosensing of Explosives or Bacterial Pathogens in Transgenic Plants 395 17.5 Conclusions 397 Life Box 17.1 Joshua Yuan 397 Life Box 17.2 Wusheng Liu 398 References 399 Index 402
Foreword xvi Contributors xviii Preface xx 1. The Impact of Biotechnology on Plant Agriculture 1 Graham Brookes 1.0 Chapter Summary and Objectives 1 1.0.1 Summary 1 1.0.2 Discussion Questions 1 1.1 Introduction 1 1.2 Cultivation of Biotechnology (GM) Crops 2 1.3 Why Farmers Use Biotech Crops 4 1.4 GM's Effects on Crop Production and Farming 7 1.5 How the Adoption of Plant Biotechnology has Impacted the Environment 8 1.5.1 Environmental Impacts from Changes in Insecticide and Herbicide Use 8 1.5.2 Impact on GHG Emissions 11 1.6 Conclusions 13 Life Box 1.1 Norman E. Borlaug 14 Life Box 1.2 Mary-Dell Chilton 15 Life Box 1.3 Robert T. Fraley 17 References 19 2. Mendelian Genetics and Plant Reproduction 20 Matthew D. Halfhill and Suzanne I. Warwick 2.0 Chapter Summary and Objectives 20 2.0.1 Summary 20 2.0.2 Discussion Questions 20 2.1 Overview of Genetics 20 2.2 Mendelian Genetics 23 2.2.1 Law of Segregation 26 2.2.2 Law of Independent Assortment 26 2.3 Mitosis and Meiosis 27 2.3.1 Mitosis 29 2.3.2 Meiosis 29 2.3.3 Recombination 30 2.3.4 Cytogenetic Analysis 31 2.3.5 Mendelian Genetics and Biotechnology Summary 32 2.4 Plant Reproductive Biology 32 2.4.1 History of Research in Plant Reproduction 32 2.4.2 Mating Systems 32 2.4.3 Hybridization and Polyploidy 36 2.4.4 Mating Systems and Biotechnology Summary 38 2.5 Conclusion 38 Life Box 2.1 Richard A. Dixon 39 Life Box 2.2 Michael L. Arnold 40 References 42 3. Plant Breeding 43 Nicholas A. Tinker and Elroy R. Cober 3.0 Chapter Summary and Objectives 43 3.0.1 Summary 43 3.0.2 Discussion Questions 43 3.1 Introduction 44 3.2 Central Concepts in Plant Breeding 45 3.2.1 Simple vs. Complex Inheritance 45 3.2.2 Phenotype vs. Genotype 46 3.2.3 Mating Systems, Varieties, Landraces, and Pure Lines 47 3.2.4 Other Topics in Population and Quantitative Genetics 49 3.2.5 The Value of a Plant Variety Depends on Many Traits 51 3.2.6 A Plant Variety Must Be Environmentally Adapted 51 3.2.7 Plant Breeding is a Numbers Game 52 3.2.8 Plant Breeding is an Iterative and Collaborative Process 52 3.2.9 Diversity, Adaptation, and Ideotypes 53 3.2.10 Other Considerations 56 3.3 Objectives in Plant Breeding 56 3.4 Methods of Plant Breeding 57 3.4.1 Methods of Hybridization 58 3.4.2 Self
Pollinated Species 58 3.4.3 Outcrossing Species 63 3.4.4 Clonally Propagated Species 67 3.5 Breeding Enhancements 68 3.5.1 Doubled Haploidy 68 3.5.2 Marker
Assisted Selection 68 3.5.3 Mutation Breeding 70 3.5.4 Apomixis 71 3.6 Conclusions 71 Life Box 3.1 Gurdev Singh Khush 72 Life Box 3.2 P. Stephen Baenziger 74 Life Box 3.3 Steven D. Tanksley 75 References 77 4. Plant Development and Physiology 78 Glenda E. Gillaspy 4.0 Chapter Summary and Objectives 78 4.0.1 Summary 78 4.0.2 Discussion Questions 78 4.1 Plant Anatomy and Morphology 79 4.2 Embryogenesis and Seed Germination 80 4.2.1 Gametogenesis 80 4.2.2 Fertilization 82 4.2.3 Fruit Development 83 4.2.4 Embryogenesis 83 4.2.5 Seed Germination 85 4.2.6 Photomorphogenesis 85 4.3 Meristems 86 4.3.1 Shoot Apical Meristem 86 4.3.2 Root Apical Meristem and Root Development 88 4.4 Leaf Development 89 4.4.1 Leaf Structure 89 4.4.2 Leaf Development Patterns 91 4.5 Flower Development 92 4.5.1 Floral Evocation 92 4.5.2 Floral Organ Identity and the ABC Model 93 4.6 Hormone Physiology and Signal Transduction 94 4.6.1 Seven Plant Hormones and Their Actions 94 4.6.2 Plant Hormone Signal Transduction 96 4.7 Conclusions 100 Life Box 4.1 Deborah Delmer 100 Life Box 4.2 Natasha Raikhel 102 Life Box 4.3 Brenda S.J. Winkel 103 References 105 5. Tissue Culture: The Manipulation of Plant Development 107 Vinitha Cardoza 5.0 Chapter Summary and Objectives 107 5.0.1 Summary 107 5.0.2 Discussion Questions 107 5.1 Introduction 107 5.2 History of Tissue Culture 108 5.3 Media and Culture Conditions 109 5.3.1 Basal Media 109 5.3.2 Growth Regulators 110 5.4 Sterile Technique 111 5.4.1 Clean Equipment 111 5.4.2 Surface Sterilization of Explants 112 5.5 Culture Conditions and Vessels 113 5.6 Culture Types and Their Uses 113 5.6.1 Callus and Somatic Embryo Culture 113 5.6.2 Cell Suspension Cultures 117 5.6.3 Anther/Microspore Culture 119 5.6.4 Protoplast Culture 119 5.6.5 Somatic Hybridization 120 5.6.6 Embryo Culture 120 5.6.7 Meristem Culture 121 5.7 Regeneration Methods of Plants in Culture 121 5.7.1 Organogenesis 121 5.7.2 Somatic Embryogenesis 123 5.7.3 Synthetic Seeds 123 5.8 Rooting of Shoots 123 5.9 Acclimation 124 5.10 Problems that can Occur in Tissue Culture 124 5.10.1 Culture Contamination 124 5.10.2 Hyperhydricity 124 5.10.3 Browning of Explants 124 5.11 Conclusions 125 Acknowledgments 125 Life Box 5.1 Glenn Burton Collins 125 Life Box 5.2 Martha S. Wright 127 Life Box 5.3 Vinitha Cardoza 128 References 129 6. Molecular Genetics of Gene Expression 133 Maria Gallo and Alison K. Flynn 6.0 Chapter Summary and Objectives 133 6.0.1 Summary 133 6.0.2 Discussion Questions 133 6.1 The Gene 133 6.1.1 DNA Coding for a Protein via the Gene 133 6.1.2 DNA as a Polynucleotide 134 6.2 DNA Packaging into Eukaryotic Chromosomes 134 6.3 Transcription 135 6.3.1 Transcription of DNA to Produce Messenger Ribonucleic Acid 135 6.3.2 Transcription Factors 140 6.3.3 Coordinated Regulation of Gene Expression 140 6.3.4 Chromatin as an Important Regulator of Transcription 141 6.3.5 Regulation of Gene Expression by DNA Methylation 142 6.3.6 RNA
Directed Gene Silencing by Small RNAs 143 6.3.7 Processing to Produce Mature mRNA 143 6.4 Translation 144 6.4.1 Initiation of Translation 147 6.4.2 Elongation Phase of Translation 147 6.4.3 Translation Termination 147 6.5 Protein Postranslational Modification 147 Life Box 6.1 Maarten Chrispeels 150 Life Box 6.2 David W. Ow 152 References 154 7. Plant Systems Biology 155 Wusheng Liu and C. Neal Stewart, Jr. 7.0 Chapter Summary and Objectives 155 7.0.1 Summary 155 7.0.2 Discussion Questions 155 7.1 Introduction 155 7.2 Defining Plant Systems Biology 157 7.3 Properties of Plant Systems 158 7.4 A Framework of Plant Systems Biology 159 7.4.1 Comprehensive Quantitative Data Sets 160 7.4.2 Network Analysis 161 7.4.3 Dynamic Modeling 161 7.4.4 Exploring Systems and Models Toward Refinement 161 7.5 Disciplines and Enabling Tools of Plant Systems Biology 162 7.5.1 Plant Genomics 162 7.5.2 Plant Transcriptomics 166 7.5.3 Plant Proteomics 168 7.5.4 Plant Metabolomics 170 7.5.5 Bioinformatics 172 7.6 Conclusions 176 Life Box 7.1 C. Robin Buell 177 Life Box 7.2 Zhenbiao Yang 178 References 179 8. Recombinant DNA, Vector Design, and Construction 181 Mark D. Curtis and David G.J. Mann 8.0 Chapter Summary and Objectives 181 8.0.1 Summary 181 8.0.2 Discussion Questions 181 8.1 DNA Modification 181 8.2 DNA Vectors 186 8.2.1 DNA Vectors for Plant Transformation 188 8.2.2 Components for Efficient Gene Expression in Plants 190 8.3 Greater Demands Lead to Innovation 192 8.3.1 "Modern" Cloning Strategies 192 8.4 Vector Design 197 8.4.1 Vectors for High
Throughput Functional Analysis 197 8.4.2 Vectors for Gene Down
Regulation Using RNA Interference (RNAi) 199 8.4.3 Expression Vectors 199 8.4.4 Vectors for Promoter Analysis 200 8.4.5 Vectors Derived from Plant Sequences 201 8.4.6 Vectors for Multigenic Traits 203 8.5 Targeted Transgene Insertions 204 8.6 Prospects 205 Life Box 8.1 Wayne Parrott 206 Life Box 8.2 David Mann 207 References 208 9. Genes and Traits of Interest 211 Kenneth L. Korth 9.0 Chapter Summary and Objectives 211 9.0.1 Summary 211 9.0.2 Discussion Questions 211 9.1 Introduction 212 9.2 Identifying Genes of Interest via Genomics and other Omics Technologies 212 9.3 Traits for Improved Crop Production Using Transgenics 214 9.3.1 Herbicide Resistance 215 9.3.2 Insect Resistance 218 9.3.3 Pathogen Resistance 220 9.3.4 Traits for Improved Products and Food Quality 222 9.4 Conclusion 227 Life Box 9.1 Dennis Gonsalves 227 Life Box 9.2 Ingo Potrykus 229 References 231 10. Promoters and Marker Genes 233 Wusheng Liu, Brian Miki and C. Neal Stewart, Jr. 10.0 Chapter Summary and Objectives 233 10.0.1 Summary 233 10.0.2 Discussion Questions 233 10.1 Introduction 234 10.2 Promoters 234 10.2.1 Constitutive Promoters 235 10.2.2 Tissue
Specific Promoters 236 10.2.3 Inducible Promoters 237 10.2.4 Synthetic Promoters 239 10.3 Marker Genes 239 10.3.1 Selectable Marker Genes 242 10.3.2 Reporter Genes 246 10.4 Marker
Free Strategies 250 10.5 Conclusions 254 Life Box 10.1 Fredy Altpeter 255 Life Box 10.2 Taniya Dhillon 257 References 259 11. Transgenic Plant Production 262 John J. Finer 11.0 Chapter Summary and Objectives 262 11.0.1 Summary 262 11.0.2 Discussion Questions 262 11.1 Overview of Plant Transformation 263 11.1.1 Introduction 263 11.1.2 Basic Components for Successful Gene Transfer to Plant Cells 263 11.2 Agrobacterium Tumefaciens 265 11.2.1 History of Agrobacterium Research 266 11.2.2 Use of the T
DNA Transfer Process for Transformation 268 11.2.3 Optimizing Delivery and Broadening the Taxonomical Range of Targets 269 11.2.4 Strain and Cultivar Compatibility 270 11.2.5 Agroinfiltration 271 11.2.6 Arabidopsis Floral Dip (Clough and Bent 1998) 271 11.3 Particle Bombardment 272 11.3.1 History of Particle Bombardment 272 11.3.2 The Fate of the Introduced DNA into Plant Cells 274 11.3.3 The Power and Problems of Direct DNA Introduction 275 11.3.4 Improvements in the Control of Transgene Expression 276 11.4 Other Methods of Transformation 276 11.4.1 The Need for Additional Technologies 276 11.4.2 Protoplasts 277 11.4.3 Whole Tissue Electroporation 278 11.4.4 Silicon Carbide Whiskers 278 11.4.5 Viral Vectors 278 11.4.6 Laser Micropuncture 279 11.4.7 Nanofiber Arrays 279 11.5 The Rush to Publish 280 11.5.1 Controversial Reports of Plant Transformation 280 11.5.2 Criteria to Consider in Judging Novel Plant Transformation Methods 284 11.6 A Look to the Future 286 Life Box 11.1 Ted Klein 286 Life Box 11.2 John Finer 287 Life Box 11.3 Kan Wang 289 References 291 12. Analysis of Transgenic Plants 293 C. Neal Stewart, Jr. 12.0 Chapter Summary and Objectives 293 12.0.1 Summary 293 12.0.2 Discussion Questions 293 12.1 Essential Elements of Transgenic Plant Analysis 293 12.2 Assays for Transgenicity, Insert Copy Number, and Segregation 295 12.2.1 Polymerase Chain Reaction 295 12.2.2 Quantitative PCR 295 12.2.3 Southern (DNA) Blot Analysis 296 12.2.4 Segregation Analysis of Progeny 300 12.3 Transgene Expression 301 12.3.1 Transcript Abundance 301 12.3.2 Protein Abundance 302 12.4 Knockdown or Knockout Analysis Rather than Overexpression Analysis 304 12.5 The Relationship Between Molecular Analyses and Phenotype 305 Life Box 12.1 Hong S. Moon 305 Life Box 12.2 Neal Stewart 306 Life Box 12.3 Nancy A. Reichert 308 References 310 13. Regulations and Biosafety 311 Alan McHughen 13.0 Chapter Summary and Objectives 311 13.0.1 Summary 311 13.0.2 Discussion Questions 311 13.1 Introduction 311 13.2 History of Genetic Engineering and Its Regulation 313 13.3 Regulation of GM Plants 315 13.3.1 New Technologies 316 13.3.2 US Regulatory Agencies and Regulations 317 13.3.3 European Union 319 13.3.4 Canada 321 13.3.5 International Perspectives 321 13.4 Regulatory Flaws and Invalid Assumptions 323 13.4.1 Conventional Plant Breeding has Higher Safety than Biotechnology
Derived GM 324 13.4.2 GMOs Should Be Regulated Because They're GMOs and Un
natural 324 13.4.3 Even though Product Risk is Important, It is Reasonable that Process (GMO) Should Trigger Regulation 324 13.4.4 Since GM Technology is New, It Might Be Hazardous and Should Be Regulated 325 13.4.5 If We Have a Valid Scientific Test, Then It Should Be Used in Regulations 326 13.4.6 Better Safe than Sorry: Overregulation is Better than Underregulation 326 13.5 Conclusion 327 Life Box 13.1 Alan McHughen 328 Life Box 13.2 Raymond D. Shillito 329 References 331 14. Field Testing of Transgenic Plants 333 Detlef Bartsch, Achim Gathmann, Christiane Saeglitz and Arti Sinha 14.0 Chapter Summary and Objectives 333 14.0.1 Summary 333 14.0.2 Discussion Questions 333 14.1 Introduction 334 14.2 Environmental Risk Assessment Process 334 14.2.1 Initial Evaluation (Era Step 1) 334 14.2.2 Problem Formulation (ERA Step 2) 335 14.2.3 Controlled Experiments and Gathering of Information (ERA Step 3) 335 14.2.4 Risk Evaluation (ERA Step 4) 335 14.2.5 Progression through a Tiered Risk Assessment 335 14.3 An Example Risk Assessment: The Case of Bt Maize 336 14.3.1 Effect of Bt Maize Pollen on Nontarget Caterpillars 337 14.3.2 Statistical Analysis and Relevance for Predicting Potential Adverse Effects on Butterflies 339 14.4 Proof of Safety Versus Proof of Hazard 340 14.5 Modeling the Risk Effects on a Greater Scale 340 14.6 Proof of Benefits: Agronomic Performance 341 14.7 Conclusions 342 Life Box 14.1 Tony Shelton 343 Life Box 14.2 Detlef Bartsch 344 References 346 15. Intellectual Property in Agricultural Biotechnology: Strategies for Open Access 347 Monica Alandete
Saez, Cecilia Chi
Ham, Gregory Graff, Sara Boettiger and Alan B. Bennett 15.0 Chapter Summary and Objectives 347 15.0.1 Summary 347 15.0.2 Discussion Questions 347 15.1 Intellectual Property and Agricultural Biotechnology 348 15.1.1 What is Intellectual Property? 349 15.1.2 What is a Patent? 349 15.2 The Relationship Between Intellectual Property and Agricultural Research 351 15.3 Patenting Plant Biotechnology: Has an Anti
Commons Developed? 352 15.3.1 Transformation Methods 352 15.3.2 Selectable Markers 353 15.3.3 Promoters 354 15.3.4 Subcellular Localization 354 15.3.5 The Importance of Combining IP
Protected Components in Transgenic Crops 355 15.4 What is Freedom to Operate (FTO)? 355 15.4.1 The Importance of FTO 355 15.4.2 FTO Case Study: the Tomato E8 Promoter 356 15.5 Strategies for Open Access 358 15.6 Conclusions 359 Life Box 15.1 Alan Bennett 360 Life Box 15.2 Maud Hinchee 361 References 363 16. Why Transgenic Plants Are So Controversial 366 Jennifer Trumbo and Douglas Powell 16.0 Chapter Summary and Objectives 366 16.0.1 Summary 366 16.0.2 Discussion Questions 366 16.1 Introduction 367 16.1.1 The Frankenstein Backdrop 367 16.1.2 Agricultural Innovations and Questions 367 16.2 Perceptions of Risk 368 16.3 Responses of Fear 370 16.4 Feeding Fear: Case Studies 372 16.4.1 Pusztai's Potatoes 372 16.4.2 Monarch Butterfly Flap 373 16.5 How Many Benefits are Enough? 373 16.6 Continuing Debates 375 16.6.1 Process vs. Product 375 16.6.2 Health Concerns 375 16.6.3 Environmental Concerns 376 16.6.4 Consumer Choice 376 16.7 Business and Control 376 16.8 Conclusions 377 Life Box 16.1 Tony Conner 378 Life Box 16.2 Channapatna S. Prakash 379 References 381 17. The Future: Advanced Plant Biotechnology, Genome Editing, and Synthetic Biology 383 Wusheng Liu and C. Neal Stewart, Jr. 17.0 Chapter Summary and Objectives 383 17.0.1 Summary 383 17.0.2 Discussion Questions 383 17.1 Introduction: The Birth of Synthetic Biology 384 17.2 Defining Synthetic Biology for Plants 385 17.2.1 Design Cycles of Synthetic Biology 385 17.2.2 Foundations of Synthetic Biology 387 17.2.3 Components of Plant Synthetic Biology 388 17.3 Enabling Tools for Plant Synthetic Biology 389 17.3.1 Computer
Aided Design 389 17.3.2 Synthetic Promoters 389 17.3.3 Precise Genome Editing 389 17.4 Synthetic Biology Applications in Plants 393 17.4.1 Synthetic Inducible Promoters 394 17.4.2 A Device for Monitoring Auxin
Induced Plant IAA Degradation in Yeast 395 17.4.3 Circuits for Phytosensing of Explosives or Bacterial Pathogens in Transgenic Plants 395 17.5 Conclusions 397 Life Box 17.1 Joshua Yuan 397 Life Box 17.2 Wusheng Liu 398 References 399 Index 402
Pollinated Species 58 3.4.3 Outcrossing Species 63 3.4.4 Clonally Propagated Species 67 3.5 Breeding Enhancements 68 3.5.1 Doubled Haploidy 68 3.5.2 Marker
Assisted Selection 68 3.5.3 Mutation Breeding 70 3.5.4 Apomixis 71 3.6 Conclusions 71 Life Box 3.1 Gurdev Singh Khush 72 Life Box 3.2 P. Stephen Baenziger 74 Life Box 3.3 Steven D. Tanksley 75 References 77 4. Plant Development and Physiology 78 Glenda E. Gillaspy 4.0 Chapter Summary and Objectives 78 4.0.1 Summary 78 4.0.2 Discussion Questions 78 4.1 Plant Anatomy and Morphology 79 4.2 Embryogenesis and Seed Germination 80 4.2.1 Gametogenesis 80 4.2.2 Fertilization 82 4.2.3 Fruit Development 83 4.2.4 Embryogenesis 83 4.2.5 Seed Germination 85 4.2.6 Photomorphogenesis 85 4.3 Meristems 86 4.3.1 Shoot Apical Meristem 86 4.3.2 Root Apical Meristem and Root Development 88 4.4 Leaf Development 89 4.4.1 Leaf Structure 89 4.4.2 Leaf Development Patterns 91 4.5 Flower Development 92 4.5.1 Floral Evocation 92 4.5.2 Floral Organ Identity and the ABC Model 93 4.6 Hormone Physiology and Signal Transduction 94 4.6.1 Seven Plant Hormones and Their Actions 94 4.6.2 Plant Hormone Signal Transduction 96 4.7 Conclusions 100 Life Box 4.1 Deborah Delmer 100 Life Box 4.2 Natasha Raikhel 102 Life Box 4.3 Brenda S.J. Winkel 103 References 105 5. Tissue Culture: The Manipulation of Plant Development 107 Vinitha Cardoza 5.0 Chapter Summary and Objectives 107 5.0.1 Summary 107 5.0.2 Discussion Questions 107 5.1 Introduction 107 5.2 History of Tissue Culture 108 5.3 Media and Culture Conditions 109 5.3.1 Basal Media 109 5.3.2 Growth Regulators 110 5.4 Sterile Technique 111 5.4.1 Clean Equipment 111 5.4.2 Surface Sterilization of Explants 112 5.5 Culture Conditions and Vessels 113 5.6 Culture Types and Their Uses 113 5.6.1 Callus and Somatic Embryo Culture 113 5.6.2 Cell Suspension Cultures 117 5.6.3 Anther/Microspore Culture 119 5.6.4 Protoplast Culture 119 5.6.5 Somatic Hybridization 120 5.6.6 Embryo Culture 120 5.6.7 Meristem Culture 121 5.7 Regeneration Methods of Plants in Culture 121 5.7.1 Organogenesis 121 5.7.2 Somatic Embryogenesis 123 5.7.3 Synthetic Seeds 123 5.8 Rooting of Shoots 123 5.9 Acclimation 124 5.10 Problems that can Occur in Tissue Culture 124 5.10.1 Culture Contamination 124 5.10.2 Hyperhydricity 124 5.10.3 Browning of Explants 124 5.11 Conclusions 125 Acknowledgments 125 Life Box 5.1 Glenn Burton Collins 125 Life Box 5.2 Martha S. Wright 127 Life Box 5.3 Vinitha Cardoza 128 References 129 6. Molecular Genetics of Gene Expression 133 Maria Gallo and Alison K. Flynn 6.0 Chapter Summary and Objectives 133 6.0.1 Summary 133 6.0.2 Discussion Questions 133 6.1 The Gene 133 6.1.1 DNA Coding for a Protein via the Gene 133 6.1.2 DNA as a Polynucleotide 134 6.2 DNA Packaging into Eukaryotic Chromosomes 134 6.3 Transcription 135 6.3.1 Transcription of DNA to Produce Messenger Ribonucleic Acid 135 6.3.2 Transcription Factors 140 6.3.3 Coordinated Regulation of Gene Expression 140 6.3.4 Chromatin as an Important Regulator of Transcription 141 6.3.5 Regulation of Gene Expression by DNA Methylation 142 6.3.6 RNA
Directed Gene Silencing by Small RNAs 143 6.3.7 Processing to Produce Mature mRNA 143 6.4 Translation 144 6.4.1 Initiation of Translation 147 6.4.2 Elongation Phase of Translation 147 6.4.3 Translation Termination 147 6.5 Protein Postranslational Modification 147 Life Box 6.1 Maarten Chrispeels 150 Life Box 6.2 David W. Ow 152 References 154 7. Plant Systems Biology 155 Wusheng Liu and C. Neal Stewart, Jr. 7.0 Chapter Summary and Objectives 155 7.0.1 Summary 155 7.0.2 Discussion Questions 155 7.1 Introduction 155 7.2 Defining Plant Systems Biology 157 7.3 Properties of Plant Systems 158 7.4 A Framework of Plant Systems Biology 159 7.4.1 Comprehensive Quantitative Data Sets 160 7.4.2 Network Analysis 161 7.4.3 Dynamic Modeling 161 7.4.4 Exploring Systems and Models Toward Refinement 161 7.5 Disciplines and Enabling Tools of Plant Systems Biology 162 7.5.1 Plant Genomics 162 7.5.2 Plant Transcriptomics 166 7.5.3 Plant Proteomics 168 7.5.4 Plant Metabolomics 170 7.5.5 Bioinformatics 172 7.6 Conclusions 176 Life Box 7.1 C. Robin Buell 177 Life Box 7.2 Zhenbiao Yang 178 References 179 8. Recombinant DNA, Vector Design, and Construction 181 Mark D. Curtis and David G.J. Mann 8.0 Chapter Summary and Objectives 181 8.0.1 Summary 181 8.0.2 Discussion Questions 181 8.1 DNA Modification 181 8.2 DNA Vectors 186 8.2.1 DNA Vectors for Plant Transformation 188 8.2.2 Components for Efficient Gene Expression in Plants 190 8.3 Greater Demands Lead to Innovation 192 8.3.1 "Modern" Cloning Strategies 192 8.4 Vector Design 197 8.4.1 Vectors for High
Throughput Functional Analysis 197 8.4.2 Vectors for Gene Down
Regulation Using RNA Interference (RNAi) 199 8.4.3 Expression Vectors 199 8.4.4 Vectors for Promoter Analysis 200 8.4.5 Vectors Derived from Plant Sequences 201 8.4.6 Vectors for Multigenic Traits 203 8.5 Targeted Transgene Insertions 204 8.6 Prospects 205 Life Box 8.1 Wayne Parrott 206 Life Box 8.2 David Mann 207 References 208 9. Genes and Traits of Interest 211 Kenneth L. Korth 9.0 Chapter Summary and Objectives 211 9.0.1 Summary 211 9.0.2 Discussion Questions 211 9.1 Introduction 212 9.2 Identifying Genes of Interest via Genomics and other Omics Technologies 212 9.3 Traits for Improved Crop Production Using Transgenics 214 9.3.1 Herbicide Resistance 215 9.3.2 Insect Resistance 218 9.3.3 Pathogen Resistance 220 9.3.4 Traits for Improved Products and Food Quality 222 9.4 Conclusion 227 Life Box 9.1 Dennis Gonsalves 227 Life Box 9.2 Ingo Potrykus 229 References 231 10. Promoters and Marker Genes 233 Wusheng Liu, Brian Miki and C. Neal Stewart, Jr. 10.0 Chapter Summary and Objectives 233 10.0.1 Summary 233 10.0.2 Discussion Questions 233 10.1 Introduction 234 10.2 Promoters 234 10.2.1 Constitutive Promoters 235 10.2.2 Tissue
Specific Promoters 236 10.2.3 Inducible Promoters 237 10.2.4 Synthetic Promoters 239 10.3 Marker Genes 239 10.3.1 Selectable Marker Genes 242 10.3.2 Reporter Genes 246 10.4 Marker
Free Strategies 250 10.5 Conclusions 254 Life Box 10.1 Fredy Altpeter 255 Life Box 10.2 Taniya Dhillon 257 References 259 11. Transgenic Plant Production 262 John J. Finer 11.0 Chapter Summary and Objectives 262 11.0.1 Summary 262 11.0.2 Discussion Questions 262 11.1 Overview of Plant Transformation 263 11.1.1 Introduction 263 11.1.2 Basic Components for Successful Gene Transfer to Plant Cells 263 11.2 Agrobacterium Tumefaciens 265 11.2.1 History of Agrobacterium Research 266 11.2.2 Use of the T
DNA Transfer Process for Transformation 268 11.2.3 Optimizing Delivery and Broadening the Taxonomical Range of Targets 269 11.2.4 Strain and Cultivar Compatibility 270 11.2.5 Agroinfiltration 271 11.2.6 Arabidopsis Floral Dip (Clough and Bent 1998) 271 11.3 Particle Bombardment 272 11.3.1 History of Particle Bombardment 272 11.3.2 The Fate of the Introduced DNA into Plant Cells 274 11.3.3 The Power and Problems of Direct DNA Introduction 275 11.3.4 Improvements in the Control of Transgene Expression 276 11.4 Other Methods of Transformation 276 11.4.1 The Need for Additional Technologies 276 11.4.2 Protoplasts 277 11.4.3 Whole Tissue Electroporation 278 11.4.4 Silicon Carbide Whiskers 278 11.4.5 Viral Vectors 278 11.4.6 Laser Micropuncture 279 11.4.7 Nanofiber Arrays 279 11.5 The Rush to Publish 280 11.5.1 Controversial Reports of Plant Transformation 280 11.5.2 Criteria to Consider in Judging Novel Plant Transformation Methods 284 11.6 A Look to the Future 286 Life Box 11.1 Ted Klein 286 Life Box 11.2 John Finer 287 Life Box 11.3 Kan Wang 289 References 291 12. Analysis of Transgenic Plants 293 C. Neal Stewart, Jr. 12.0 Chapter Summary and Objectives 293 12.0.1 Summary 293 12.0.2 Discussion Questions 293 12.1 Essential Elements of Transgenic Plant Analysis 293 12.2 Assays for Transgenicity, Insert Copy Number, and Segregation 295 12.2.1 Polymerase Chain Reaction 295 12.2.2 Quantitative PCR 295 12.2.3 Southern (DNA) Blot Analysis 296 12.2.4 Segregation Analysis of Progeny 300 12.3 Transgene Expression 301 12.3.1 Transcript Abundance 301 12.3.2 Protein Abundance 302 12.4 Knockdown or Knockout Analysis Rather than Overexpression Analysis 304 12.5 The Relationship Between Molecular Analyses and Phenotype 305 Life Box 12.1 Hong S. Moon 305 Life Box 12.2 Neal Stewart 306 Life Box 12.3 Nancy A. Reichert 308 References 310 13. Regulations and Biosafety 311 Alan McHughen 13.0 Chapter Summary and Objectives 311 13.0.1 Summary 311 13.0.2 Discussion Questions 311 13.1 Introduction 311 13.2 History of Genetic Engineering and Its Regulation 313 13.3 Regulation of GM Plants 315 13.3.1 New Technologies 316 13.3.2 US Regulatory Agencies and Regulations 317 13.3.3 European Union 319 13.3.4 Canada 321 13.3.5 International Perspectives 321 13.4 Regulatory Flaws and Invalid Assumptions 323 13.4.1 Conventional Plant Breeding has Higher Safety than Biotechnology
Derived GM 324 13.4.2 GMOs Should Be Regulated Because They're GMOs and Un
natural 324 13.4.3 Even though Product Risk is Important, It is Reasonable that Process (GMO) Should Trigger Regulation 324 13.4.4 Since GM Technology is New, It Might Be Hazardous and Should Be Regulated 325 13.4.5 If We Have a Valid Scientific Test, Then It Should Be Used in Regulations 326 13.4.6 Better Safe than Sorry: Overregulation is Better than Underregulation 326 13.5 Conclusion 327 Life Box 13.1 Alan McHughen 328 Life Box 13.2 Raymond D. Shillito 329 References 331 14. Field Testing of Transgenic Plants 333 Detlef Bartsch, Achim Gathmann, Christiane Saeglitz and Arti Sinha 14.0 Chapter Summary and Objectives 333 14.0.1 Summary 333 14.0.2 Discussion Questions 333 14.1 Introduction 334 14.2 Environmental Risk Assessment Process 334 14.2.1 Initial Evaluation (Era Step 1) 334 14.2.2 Problem Formulation (ERA Step 2) 335 14.2.3 Controlled Experiments and Gathering of Information (ERA Step 3) 335 14.2.4 Risk Evaluation (ERA Step 4) 335 14.2.5 Progression through a Tiered Risk Assessment 335 14.3 An Example Risk Assessment: The Case of Bt Maize 336 14.3.1 Effect of Bt Maize Pollen on Nontarget Caterpillars 337 14.3.2 Statistical Analysis and Relevance for Predicting Potential Adverse Effects on Butterflies 339 14.4 Proof of Safety Versus Proof of Hazard 340 14.5 Modeling the Risk Effects on a Greater Scale 340 14.6 Proof of Benefits: Agronomic Performance 341 14.7 Conclusions 342 Life Box 14.1 Tony Shelton 343 Life Box 14.2 Detlef Bartsch 344 References 346 15. Intellectual Property in Agricultural Biotechnology: Strategies for Open Access 347 Monica Alandete
Saez, Cecilia Chi
Ham, Gregory Graff, Sara Boettiger and Alan B. Bennett 15.0 Chapter Summary and Objectives 347 15.0.1 Summary 347 15.0.2 Discussion Questions 347 15.1 Intellectual Property and Agricultural Biotechnology 348 15.1.1 What is Intellectual Property? 349 15.1.2 What is a Patent? 349 15.2 The Relationship Between Intellectual Property and Agricultural Research 351 15.3 Patenting Plant Biotechnology: Has an Anti
Commons Developed? 352 15.3.1 Transformation Methods 352 15.3.2 Selectable Markers 353 15.3.3 Promoters 354 15.3.4 Subcellular Localization 354 15.3.5 The Importance of Combining IP
Protected Components in Transgenic Crops 355 15.4 What is Freedom to Operate (FTO)? 355 15.4.1 The Importance of FTO 355 15.4.2 FTO Case Study: the Tomato E8 Promoter 356 15.5 Strategies for Open Access 358 15.6 Conclusions 359 Life Box 15.1 Alan Bennett 360 Life Box 15.2 Maud Hinchee 361 References 363 16. Why Transgenic Plants Are So Controversial 366 Jennifer Trumbo and Douglas Powell 16.0 Chapter Summary and Objectives 366 16.0.1 Summary 366 16.0.2 Discussion Questions 366 16.1 Introduction 367 16.1.1 The Frankenstein Backdrop 367 16.1.2 Agricultural Innovations and Questions 367 16.2 Perceptions of Risk 368 16.3 Responses of Fear 370 16.4 Feeding Fear: Case Studies 372 16.4.1 Pusztai's Potatoes 372 16.4.2 Monarch Butterfly Flap 373 16.5 How Many Benefits are Enough? 373 16.6 Continuing Debates 375 16.6.1 Process vs. Product 375 16.6.2 Health Concerns 375 16.6.3 Environmental Concerns 376 16.6.4 Consumer Choice 376 16.7 Business and Control 376 16.8 Conclusions 377 Life Box 16.1 Tony Conner 378 Life Box 16.2 Channapatna S. Prakash 379 References 381 17. The Future: Advanced Plant Biotechnology, Genome Editing, and Synthetic Biology 383 Wusheng Liu and C. Neal Stewart, Jr. 17.0 Chapter Summary and Objectives 383 17.0.1 Summary 383 17.0.2 Discussion Questions 383 17.1 Introduction: The Birth of Synthetic Biology 384 17.2 Defining Synthetic Biology for Plants 385 17.2.1 Design Cycles of Synthetic Biology 385 17.2.2 Foundations of Synthetic Biology 387 17.2.3 Components of Plant Synthetic Biology 388 17.3 Enabling Tools for Plant Synthetic Biology 389 17.3.1 Computer
Aided Design 389 17.3.2 Synthetic Promoters 389 17.3.3 Precise Genome Editing 389 17.4 Synthetic Biology Applications in Plants 393 17.4.1 Synthetic Inducible Promoters 394 17.4.2 A Device for Monitoring Auxin
Induced Plant IAA Degradation in Yeast 395 17.4.3 Circuits for Phytosensing of Explosives or Bacterial Pathogens in Transgenic Plants 395 17.5 Conclusions 397 Life Box 17.1 Joshua Yuan 397 Life Box 17.2 Wusheng Liu 398 References 399 Index 402