Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and…mehr
Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding healthissues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world's booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.
Riyaz Z Sayyed is an Associate Professor and Head of the Department of Microbiology, PSGVP Mandal's Arts, Science College, Shahada, Maharashtra, India. Currently, he serves as President of the Indian Chapter of the Asian PGPR Society for Sustainable Agriculture. He has 15 years of research expertise in siderophore based PGPR and has authored 91 peer-reviewed research papers and 64 books. He is a recipient of many prestigious awards and honors from various research societies and the Government of India. In addition, he is an Associate Editor of the journal Environmental Sustainability (Springer). Naveen Kumar Arora, a Professor at the Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India is a respected researcher in the field of Environmental Microbiology and Biotechnology. He has authored more than 60 articles and edited 12 books, all published by Springer. He is the Editor in Chief of the journal Environmental Sustainability published by Springer Nature. He is recipient of many prestigious awards, passionate advocate of wildlife conservation and President of the Society for Conservation of Wildlife. Munagala S. Reddy is a Professor at the Department of Entomology & Plant Pathology at Auburn University, Auburn, USA and Founder and Chairman of the Asian PGPR Society for Sustainable Agriculture. He is a recipient of many prestigious awards from the USA, Canada, Saudi Arabia, Indonesia, Philippines, China, India, etc. and has successfully generated several millions of dollars in funding from federal, international and private agencies for his research on commercializing biofertilizers and biofungicides (PGPR). Currently, he is an entrepreneur and consultant for several national and international agencies. He has authored or co-authored over 300 publications.
Inhaltsangabe
Chapter 1. Role of plant growth promoting rhizobacteria to modulate proline biosynthesis in plants for alleviation of salt stress.- Chapter 2. Salinity stress and plant growth-promoting rhizobacteria: A journey into the soil.- Chapter 3. Dark Septate Endophytes and Their Role in Enhancing Plant Resistance to Abiotic Stress.- Chapter 4. Rhizobacteria-abiotic stress management.- Chapter 5. Plant Growth Promoting Rhizobacteria: benign and useful substitute for mitigation of biotic and abiotic stresses.- Chapter 6. Rhizospheric microflora: A natural alleviator of drought stress in agricultural crops.- Chapter 7. Quorum sensing molecules of rhizobacteria: A trigger for developing systemic resistance in plants.- Chapter 8. Zinc solubilizing bacteria: A boon for sustainable agriculture.- Chapter 9. Rhizobacteria as bio-protectants against stress conditions.- Chapter 10. Rhizobacteria forreducing heavy metal stress in plant and soil.- Chapter 11. Pesticide induced cross-resistance in soil bacteria.- Chapter 12. Psychrotrophic microbes: Biodiversity and biotechnological implications for cold stress in plant.- Chapter 13. Phosphate Solubilising Drought Tolerant Microbes: Biodiversity and Biotechnological Application for Alleviation of Drought Stress in Plant.- Chapter 14. Methylotrophic Bacteria Mitigating Abiotic Stress.- Chapter 15. Rhizobacteria and Phytohormones Mediated Salt Induced Abiotic Stress Management in Plant". - Chapter 16. Role of PGPR for alleviating aluminium toxicity in acidic soil.- Chapter 17. Rhizobacteria in Abiotic Stress Management.- Chapter 18. Rhizobacteria - plant interaction, alleviation.
Chapter 1. Role of plant growth promoting rhizobacteria to modulate proline biosynthesis in plants for alleviation of salt stress.- Chapter 2. Salinity stress and plant growth-promoting rhizobacteria: A journey into the soil.- Chapter 3. Dark Septate Endophytes and Their Role in Enhancing Plant Resistance to Abiotic Stress.- Chapter 4. Rhizobacteria-abiotic stress management.- Chapter 5. Plant Growth Promoting Rhizobacteria: benign and useful substitute for mitigation of biotic and abiotic stresses.- Chapter 6. Rhizospheric microflora: A natural alleviator of drought stress in agricultural crops.- Chapter 7. Quorum sensing molecules of rhizobacteria: A trigger for developing systemic resistance in plants.- Chapter 8. Zinc solubilizing bacteria: A boon for sustainable agriculture.- Chapter 9. Rhizobacteria as bio-protectants against stress conditions.- Chapter 10. Rhizobacteria forreducing heavy metal stress in plant and soil.- Chapter 11. Pesticide induced cross-resistance in soil bacteria.- Chapter 12. Psychrotrophic microbes: Biodiversity and biotechnological implications for cold stress in plant.- Chapter 13. Phosphate Solubilising Drought Tolerant Microbes: Biodiversity and Biotechnological Application for Alleviation of Drought Stress in Plant.- Chapter 14. Methylotrophic Bacteria Mitigating Abiotic Stress.- Chapter 15. Rhizobacteria and Phytohormones Mediated Salt Induced Abiotic Stress Management in Plant". - Chapter 16. Role of PGPR for alleviating aluminium toxicity in acidic soil.- Chapter 17. Rhizobacteria in Abiotic Stress Management.- Chapter 18. Rhizobacteria - plant interaction, alleviation.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826