74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
37 °P sammeln
  • Broschiertes Buch

This volume presents detailed descriptions and analyses of the underlying features, issues and suppositions associated with seed and seedling laboratory bioassays presented in a previous volume. It is, however, broader in scope and substance in that the information provided is relevant to all water-soluble compounds released to soil by putative allelopathic living plants and their litter and residues. It is ultimately an attempt to update and expand the practical guidelines for designing laboratory bioassays that have previously been provided in the literature with the hope that the designs of…mehr

Produktbeschreibung
This volume presents detailed descriptions and analyses of the underlying features, issues and suppositions associated with seed and seedling laboratory bioassays presented in a previous volume. It is, however, broader in scope and substance in that the information provided is relevant to all water-soluble compounds released to soil by putative allelopathic living plants and their litter and residues. It is ultimately an attempt to update and expand the practical guidelines for designing laboratory bioassays that have previously been provided in the literature with the hope that the designs of future seed and seedling laboratory bioassays will become more relevant to field systems. Standard references have been included to provide background and additional details. This volume has been written specifically for researchers and their graduate students who are interested in studying plant-plant allelopathic interactions.
Autorenporträt
Professor Emeritus at NC State University, Prof. Udo Blum is interested in characterizing and identifying the mechanisms by which allelopathic compounds, specifically phenolic acids (e.g., ferulic acid, p-coumaric acid, vanillic acid, p-hydroxybenzoic acid), released into the soil environment may impact soil chemistry (e.g., soil nutrition, organic pools, sorption and desorption), soil microbiology (e.g., population biology, natural selection, carbon utilization), rhizosphere ecology (e.g., microbial population biology) and population biology (e.g., germination, seedling emergence) and physiology (e.g., mineral nutrition, carbon allocation, water relations, growth) of dicot weeds in no-till agroecosystems.