En este trabajo se analizan diversos aspectos de plasticidad neuronal y de dinámica de redes neuronales. En primer lugar, se estudia la plasticidad dependiente del tiempo desde un punto de vista de la optimización de entropía condicional. Se analizan los efectos de los tipos de dinámica neuronal sobre las ventanas de plasticidad obtenidas con este principio. Se muestra luego, que la variabilidad en la corriente de entrada que una neurona recibe, puede ser explicada a través de estados balanceados de redes neuronales de gran tamaño. Se estudian estas fluctuaciones y se analiza con métodos de correlación inversa la posibilidad de identificar el tipo neuronal cuando el ruido es generado por la misma red. Finalmente, se estudia el desarrollo de las conexiones de una red recurrente con dinámica neuronal de tasa de disparo, que representa una hiper-columna de la corteza. Se obtiene, que la plasticidad Hebbiana por si sola da lugar a inestabilidades en el desarrollo de las sinapsis. Conla incorporación de procesos de homeostasis que tienden a estabilizar el sistema, se logran desarrollar conexiones que cumplen las características y funciones esperadas.