167,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
84 °P sammeln
  • Broschiertes Buch

Plasticity of Metallic Materials presents a rigorous framework for description of plasticity phenomena, classic and recent models for isotropic and anisotropic materials, new original analytical solutions to various elastic/plastic boundary value problems and new interpretations of mechanical data based on these recent models. The book covers models for metals with both cubic and hexagonal crystal structures, presents the mechanical tests required to determine the model parameters, various identification procedures, verification, and validation tests, and numerous applications to metal forming.…mehr

Produktbeschreibung
Plasticity of Metallic Materials presents a rigorous framework for description of plasticity phenomena, classic and recent models for isotropic and anisotropic materials, new original analytical solutions to various elastic/plastic boundary value problems and new interpretations of mechanical data based on these recent models. The book covers models for metals with both cubic and hexagonal crystal structures, presents the mechanical tests required to determine the model parameters, various identification procedures, verification, and validation tests, and numerous applications to metal forming.
Autorenporträt
Oana Cazacu is a Charles E. Taylor Professor of Mechanics in the Department of Mechanical and Aerospace Engineering at the University of Floridäs Graduate Research Engineering and Education Center (UF/REEF). She has Habilitation and Doctoral degrees from University of Lille, France, and has been the recipient of visiting chair professorships in Europe and Australia She is currently the recipient of the Chair of Excellence in Mechanics at the University Carlos III of Madrid, Associate Editor of the International Journal of Material Forming, has edited or co-edited three books, and authored or co-authored over 130 refereed papers. Her main research interests are in theoretical solid mechanics with an emphasis on multiscale modelling of dissipative mechanisms in anisotropic materials. Major contributions include the development of widely-used anisotropic criteria for lightweight metals, now included in the built-in materials library of commercial and academic finite-element software.