311,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
156 °P sammeln
  • Gebundenes Buch

This book contains a series of tutorial essays on polarization mode dispersion (PMD) by the leading experts in the field. It starts with an introductory review of the basic concepts and continues with more advanced topics, including a thorough review of PMD mitigation techniques. Topics covered include mathematical representation of PMD, how to properly model PMD in numerical simulations, how to accurately measure PMD and other related polarization effects, and how to infer fiber properties from polarization measurements. It includes discussions of other polarization effects such as…mehr

Produktbeschreibung
This book contains a series of tutorial essays on polarization mode dispersion (PMD) by the leading experts in the field. It starts with an introductory review of the basic concepts and continues with more advanced topics, including a thorough review of PMD mitigation techniques. Topics covered include mathematical representation of PMD, how to properly model PMD in numerical simulations, how to accurately measure PMD and other related polarization effects, and how to infer fiber properties from polarization measurements. It includes discussions of other polarization effects such as polarization-dependent loss and the interaction of PMD with fiber nonlinearity. It additionally covers systems issues like the impact of PMD on wavelength division multiplexed systems. This book is intended for research scientists or engineers who wish to become familiar with PMD and its system impacts. This book covers controversial questions like the best way to represent PMD from the perspective of several different experts, giving both the beginner and the advanced reader a balanced view of these questions.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Curtis R. Menyuk was born March 26, 1954. He received the B.S. and M.S. degrees from MIT in 1976 and the Ph.D. from UCLA in 1981. He has worked as a research associate at the University of Maryland, College Park and at Science Applications International Corporation in McLean, VA. In 1986 he became an Associate Professor in the Department of Electrical Engineering at the University of Maryland Baltimore County, and he was the founding member of this department. In 1993, he was promoted to Professor. He was on partial leave from UMBC from Fall, 1996 until Fall, 2002. From 1996 - 2001, he worked part-time for the Department of Defense, co-directing the Optical Networking program at the DoD Laboratory for Telecommunications Sciences in Adelphi, MD from 1999 - 2001. In 2001 - 2002, he was Chief Scientist at PhotonEx Corporation. For the last 17 years, his primary research area has been theoretical and computational studies of fiber optic communications. He has authored or co-authored more than 180 archival journal publications as well as numerous other publications and presentations. He has also edited two books. The equations and algorithms that he and his research group at UMBC have developed to model optical fiber transmission systems are used extensively in the telecommunications industry. He is a member of the Society for Industrial and Applied Mathematics and the American Physical Society. He is a fellow of the Optical Society of America and the IEEE. He is a former UMBC Presidential Research Professor. Andrea Galtarossa was born November 25, 1958. He received the degree in Electronic Engineering from the University of Padova, Italy, in 1984. He has worked as research associate at the University of Padova, and as scientific director at Saifo, a private company. He became an assistant professor in electromagnetic fields (1990) and then associate professor in microwaves (1998) at the Department of Electronics (actually Department ofInformation Engineering), University of Padova. His primary research area has been theoretical, numerical and experimental evaluation of propagation of optical signals through birefringent media. In particular he has worked on polarization mode dispersion in single mode fibers and devices, considering causes, effects and mitigation techniques. In the last years, large part of his research activity has been devoted to investigation on birefringent properties of single mode fibers by means of polarization sensitive backscattering techiques and designing new ultra-low pmd fibers. He has authored or co-authored more than 100 archival journal publications, 2 patents, one book. He is a senior member of IEEE.