A ring R satisfies a polynomial identity if there is a polynomial f in noncommuting variables which vanishes under substitutions from R. For example, commutative rings satisfy the polynomial f(x,y) = xy - yx and exterior algebras satisfy the polynomial f(x,y,z) = (xy - yx)z - z(xy - yx). "Satisfying a polynomial identity" is often regarded as a generalization of commutativity.
These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The former studies the ideal of polynomial identities satisfied by a ring R. The latter studies the properties of rings which satisfy a polynomial identity.
The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessibleto newcomers to the subject.
The intended audience is graduate students in algebra, and researchers in algebra, combinatorics and invariant theory.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The former studies the ideal of polynomial identities satisfied by a ring R. The latter studies the properties of rings which satisfy a polynomial identity.
The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessibleto newcomers to the subject.
The intended audience is graduate students in algebra, and researchers in algebra, combinatorics and invariant theory.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
From the reviews:
"The book under review consists of two excellent monographs on the PI-theory by two leading researchers, V. Drensky and E. Formanek ... In summary, both expositions are very well written, and the book is recommended both for graduate students and researchers." (MATHEMATICAL REVIEWS)
"The book under review consists of two excellent monographs on the PI-theory by two leading researchers, V. Drensky and E. Formanek ... In summary, both expositions are very well written, and the book is recommended both for graduate students and researchers." (MATHEMATICAL REVIEWS)