160,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
80 °P sammeln
  • Gebundenes Buch

As concerns about climate change, energy prices, and energy security loom, regulatory and research communities have shown growing interest in alternative energy sources and their integration into distributed energy systems. However, many of the candidate microgeneration and associated storage systems cannot be readily interfaced to the 50/60 Hz grid. In Power Electronic Converters for Microgrids , Sharkh and Abu-Sara introduce the basics and practical concerns of analyzing and designing such micro-generation grid interface systems. Readers will become familiar with methods for stably feeding…mehr

Produktbeschreibung
As concerns about climate change, energy prices, and energy security loom, regulatory and research communities have shown growing interest in alternative energy sources and their integration into distributed energy systems. However, many of the candidate microgeneration and associated storage systems cannot be readily interfaced to the 50/60 Hz grid. In Power Electronic Converters for Microgrids , Sharkh and Abu-Sara introduce the basics and practical concerns of analyzing and designing such micro-generation grid interface systems. Readers will become familiar with methods for stably feeding the larger grid, importing from the grid to charge on-site storage, disconnecting from the grid in case of grid failure, as well as connect multiple microgrids while sharing their loads appropriately. Sharkh and Abu-Sara introduce not only the larger context of the technology, but also present potential future applications, along with detailed case studies and tutorials to help the reader effectively engineer microgrid systems.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
S. M. Sharkh is a Senior Lecturer at the School of Engineering Sciences, University of Southampton and the Managing Director of HiT Systems Ltd, which specializes in electromagnetic system analysis and design, control systems and web applications. He has approximately 17 years research experience in electrical and electromagnetic systems, and has been awarded numerous research grants leading to commercialized products in a number of related areas: grid connected PWM inverters, electric machines in harsh environments (high-speed, high temperature, high pressure, corrosive chemicals, submerged in liquids or underwater) PM machines (axial gap dc machines, VRPM transverse flux machines),  characterization of and management of lithium ion batteries, sensorless control of PM machines,  novel structurally integrated electric machines for marine thrusters and electromagnetic losses in high-speed machines, and microgrid intefaces. Sharkh has lectured on the subject of grid-connected inverters and their control to both undergraduate and postgraduate students, as well as companies. He holds a BEng and PhD in electrical engineering from the University of Southampton. M. A. Abu-Sara works with Bowman Power Systems, where he is the lead engineer in designing and developing systems for micro-generation. He holds a PhD in Electrical Engineering from the University of Southampton.