Power Electronics for Green Energy Conversion
Herausgeber: Bhaskar, Mahajan Sagar; Subramaniam, Umashankar; Holm-Nielsen, Jens Bo; Padmanaban, Sanjeevikumar; Gupta, Nikita
Power Electronics for Green Energy Conversion
Herausgeber: Bhaskar, Mahajan Sagar; Subramaniam, Umashankar; Holm-Nielsen, Jens Bo; Padmanaban, Sanjeevikumar; Gupta, Nikita
- Gebundenes Buch
Andere Kunden interessierten sich auch für
- Conversion of Water and CO2 to Fuels Using Solar Energy229,99 €
- M Godoy SimoesModeling Power Electronics and Interfacing Energy Conversion Systems137,99 €
- Wind Energy Storage and Conversion213,99 €
- Anthony DufourThermochemical Conversion of Biomass for the Production of Energy and Chemicals189,99 €
- Integrated Green Energy Solutions, Volume 1264,99 €
- Applications of Modern Heuristic Optimization Methods in Power and Energy Systems182,99 €
- Zhenya LiuElectric Power and Energy in China104,99 €
-
-
-
Produktdetails
- Verlag: Wiley
- Seitenzahl: 640
- Erscheinungstermin: 9. August 2022
- Englisch
- Abmessung: 231mm x 155mm x 38mm
- Gewicht: 975g
- ISBN-13: 9781119786481
- ISBN-10: 1119786487
- Artikelnr.: 60401779
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Mahajan Sagar Bhaskar, PhD, is with the Renewable Energy Lab, in the Department of Communications and Networks Engineering at the College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia. After receiving his PhD in electrical and electronic engineering from the University of Johannesburg, South Africa in 2019, he was a post-doctoral researcher in the Department of Energy Technology, Aalborg University, Esbjerg, Denmark. He has several years of research experience from several universities, and he has authored over 100 scientific papers in the area of DC/AC power, receiving several awards, as well. He is a member of a number of scientific societies and is a reviewer for several technical journals and conferences, including IEEE and IET. Nikita Gupta, PhD, is a professor in the Department of Electrical Engineering, University Institute of Technology, Himachal Pradesh University, India. She received her BTech degree in electrical and electronics engineering from the National Institute of Technology, Hamirpur, India in 2011 and MTech degree in power systems from Delhi Technological University, Delhi, India in 2014. She earned her PhD from the Department of Electrical Engineering at Delhi Technological University, Delhi, India, in 2018. Her research interests include power system analysis, power quality, power electronics applications in renewable energy, and microgrids. Sanjeevikumar Padmanaban, PhD, is a faculty member with the Department of Energy Technology, Aalborg University, Esbjerg, Denmark and works with CTIF Global Capsule (CGC), Department of Business Development and Technology, Aarhus University, Denmark. He received his PhD in electrical engineering from the University of Bologna, Italy. He has almost ten years of teaching, research and industrial experience and is an associate editor on a number of international scientific refereed journals. He has published more than 300 research papers and has won numerous awards for his research and teaching. Jens Bo Holm-Nielsen currently works at the Department of Energy Technology, Aalborg University and is head of the Esbjerg Energy Section. He helped establish the Center for Bioenergy and Green Engineering in 2009 and served as the head of the research group. He has served as technical advisor for many companies in this industry, and he has executed many large-scale European Union and United Nation projects. He has authored more than 300 scientific papers and has participated in over 500 various international conferences. Umashankar Subramaniam, PhD, is at Renewable Energy Lab, College of Engineering, Prince Sultan University, Saudi Arabia and has over 15 years of teaching, research and industrial R&D experience. He has published more than 250 research papers in scientific and technical refereed journals and conferences. He has also authored, co-authored, or contributed to 12 books, including books for Scrivener Publishing. He is an editor of a highly-respected technical journal, and he has won several awards in the field.
Preface xvii
1 Green Energy Technology-Based Energy-Efficient Appliances for Buildings 1
Avanish Gautam Singh, Rahul Rajeevkumar Urs, Rajeev Kumar Chauhan and
Prabhakar Tiwari
Nomenclature 2
Variables 2
1.1 Balance of System Appliances Needed for Green Energy Systems 3
1.1.1 Grid Interactive Inverters for Buildings with AC Wiring 4
1.1.2 Grid Interactive Inverter with No Battery Backup 4
1.1.3 Main Grid-Interactive Inverter (Hybrid Inverter) 6
1.1.4 DC-DC Converter for DC Building 6
1.1.5 Bidirectional Inverter 10
1.1.6 Battery Bank 11
1.2 Major Green Energy Home Appliances 13
1.2.1 dc Air Conditioners 14
1.2.2 dc Lighting 15
1.2.3 dc Refrigeration 15
1.2.4 Emerging Products for Grid Connected Homes and Businesses 17
1.2.5 Electrical Vehicle 17
1.3 Energy Savings Through Green Appliances 18
1.3.1 Appliance Scheduling 20
1.3.2 A Case Study of a Mid-Ranged Home with Green Home Appliances Versus
Conventional Home Appliances: A Comparison of 1 Day Consumption 23
1.4 Conclusion 26
References 27
2 Integrated Electric Power Systems and Their Power Quality Issues 29
Akhil Gupta, Kamal Kant Sharma and Gagandeep Kaur
2.1 Introduction 30
2.2 Designing of a Hybrid Energy System 32
2.3 Classification of Hybrid Energy Systems 34
2.3.1 Hybrid Wind-Solar System 34
2.3.2 Hybrid Diesel-Wind System 35
2.3.3 Hybrid Wind-Hydro Power System 36
2.3.4 Hybrid Fuel Cell-Solar System 37
2.3.5 Hybrid Solar Thermal System 37
2.4 Power Quality Implications 38
2.4.1 Interruption 39
2.4.2 Undervoltage or Brownout 40
2.4.3 Voltage Sag or Dip 41
2.4.4 Noise 42
2.4.5 Frequency 43
2.4.6 Harmonic 43
2.4.7 Notching 44
2.4.8 Short-Circuit 45
2.4.9 Swell 45
2.4.10 Transient or Surges 45
2.5 Conclusion 62
References 63
3 Renewable Energy in India and World for Sustainable Development 67
Kuldeep Jayaswal, D. K. Palwalia and Aditya Sharma
3.1 Introduction 67
3.2 The Energy Framework 68
3.3 Status of Solar PV Energy 73
3.4 Boons of Renewable Energy 75
3.5 Energy Statistics 76
3.5.1 Coal 76
3.5.2 Natural Gas 78
3.5.3 Biofuels 78
3.5.4 Electricity 80
3.6 Renewable Energy Resources 82
3.7 Conclusion 85
Abbreviations 86
References 86
4 Power Electronics: Technology for Wind Turbines 91
K.T. Maheswari, P. Prem and Jagabar Sathik
4.1 Introduction 92
4.1.1 Overview of Wind Power Generation 93
4.1.1.1 India-Wind Potential 94
4.1.2 Advancement of Wind Power Technologies 95
4.1.3 Power Electronics Technologies for Wind Turbines 96
4.2 Power Converter Topologies for Wind Turbines 98
4.2.1 Matrix Converter 99
4.2.2 Z Source Matrix Converter 100
4.3 Quasi Z Source Direct Matrix Converter 104
4.3.1 Principle of Operation 104
4.3.2 Modulation Strategy 107
4.3.2.1 Closed Loop Control of QZSDMC 107
4.3.3 Simulation Results and Discussion 108
4.4 Conclusion 111
References 111
5 Investigation of Current Controllers for Grid Interactive Inverters 115
Aditi Chatterjee and Kanungo Barada Mohanty
5.1 Introduction 116
5.2 Current Control System for Single-Phase Grid Interactive Inverters 117
5.2.1 Hysteresis Current Controller 119
5.2.2 Proportional Integral Current Control 121
5.2.3 Proportional Resonant Current Control 125
5.2.4 Dead Beat Current Control 129
5.2.5 Model Predictive Current Control 131
5.2.5.1 Analysis of Discretized System Model Dynamics 134
5.2.5.2 Cost Function Assessment 135
5.3 Simulation Results and Analysis 137
5.3.1 Results in Steady-State Operating Mode 138
5.3.2 Results in Dynamic Operating Mode 139
5.3.3 Comparative Assessment of the Current Controllers 145
5.3.4 Hardware Implementation 145
5.3.4.1 Hardware Components 147
5.3.4.2 Digital Implementation 150
5.4 Experimental Results 151
5.5 Future Scope 153
5.6 Conclusion 154
References 155
6 Multilevel Converter for Static Synchronous Compensators:
State-of-the-Art, Applications and Trends 159
Dayane do Carmo Mendonça, Renata Oliveira de Sousa, João Victor Matos
Farias, Heverton Augusto Pereira, Seleme Isaac Seleme Júnior and Allan
Fagner Cupertino
6.1 Introduction 160
6.2 STATCOM Realization 164
6.2.1 Two-Level Converters 164
6.2.2 Early Multilevel Converters 168
6.2.3 Cascaded Multilevel Converters 170
6.2.4 Summary of Topologies 174
6.3 STATCOM Control Objectives 175
6.3.1 Operating Principle 175
6.3.2 Control Objectives 176
6.3.3 Modulation Schemes 179
6.3.3.1 Nlc 181
6.3.3.2 Ps-pwm 181
6.4 Benchmarking of Cascaded Topologies 187
6.4.1 Design Assumptions 187
6.4.1.1 Y-chb 190
6.4.1.2 ¿-chb 191
6.4.1.3 Hb-mmc 193
6.4.1.4 Fb-mmc 196
6.4.2 Current Stress in Semiconductor Devices 198
6.4.3 Current Stress in Submodule Capacitor 201
6.4.4 Comparison of Characteristics 205
6.5 STATCOM Trends 209
6.5.1 Cost Reduction 209
6.5.2 Reliability Requirements 212
6.5.3 Modern Grid Codes Requirements 215
6.5.4 Energy Storage Systems 216
6.6 Conclusions and Future Trends 217
References 218
7 Topologies and Comparative Analysis of Reduced Switch Multilevel
Inverters for Renewable Energy Applications 221
Aishwarya V. and Gnana Sheela K.
7.1 Introduction 221
7.2 Reduced-Switch Multilevel Inverters 224
7.3 Comparative Analysis 251
7.4 Conclusion 258
References 258
8 A Novel Step-Up Switched-Capacitor-Based Multilevel Inverter Topology
Feasible for Green Energy Harvesting 265
Erfan Hallaji and Kazem Varesi
8.1 Introduction 266
8.2 Proposed Basic Topology 269
8.3 Proposed Extended Topology 270
8.3.1 First Algorithm (P 1) 270
8.3.2 Second Algorithm (P 2) 271
8.4 Operational Mode 272
8.4.1 Mode A 275
8.4.2 Mode B 275
8.4.3 Mode c 275
8.4.4 Mode d 276
8.4.5 Mode E 276
8.4.6 Mode F 277
8.4.7 Mode G 277
8.4.8 Mode H 277
8.4.9 Mode I 278
8.4.10 Mode J 278
8.4.11 Mode K 279
8.4.12 Mode l 279
8.4.13 mode m 279
8.4.14 Mode N 280
8.4.15 Mode O 280
8.4.16 Mode P 281
8.4.17 Mode Q 281
8.5 Standing Voltage 282
8.5.1 Standing Voltage (SV) for the First Algorithm (P 1) 283
8.5.2 Standing Voltage (SV) for the Second Algorithm (P 2) 283
8.6 Proposed Cascaded Topology 283
8.6.1 First Algorithm (S 1) 284
8.6.2 Second Algorithm (S 2) 284
8.6.3 Third Algorithm (S 3) 284
8.6.4 Fourth Algorithm (S 4) 285
8.6.5 Fifth Algorithm (S 5) 285
8.6.6 Sixth Algorithm (S 6) 286
8.7 Modulation Method 286
8.8 Efficiency and Losses Analysis 287
8.8.1 Switching Losses 287
8.8.2 Conduction Losses 288
8.8.3 Ripple Losses 288
8.8.4 Efficiency 288
8.9 Capacitor Design 289
8.10 Comparison Results 291
8.11 Simulation Results 295
8.12 Conclusion 299
References 299
9 Classification of Conventional and Modern Maximum Power Point Tracking
Techniques for Photovoltaic Energy Generation Systems 303
Mohammed Salah Bouakkaz, Ahcene Boukadoum, Omar Boudebbouz, Nadir
Boutasseta, Issam Attoui and Ahmed Bouraiou
9.1 Introduction 304
9.1.1 Classification of MPPT Techniques 306
9.1.2 MPPT Algorithms Based on PV Side Parameters 307
9.2 MPPT Algorithms Based on Load Side Parameters 307
9.3 Conventional MPPT Algorithms 308
9.3.1 Indirect Techniques 308
9.3.1.1 MPPT Based on Constant Voltage (CV) 308
9.3.1.2 Fractional Voltage (FV) Technique 309
9.3.1.3 Fractional Currents (FC) Technique 310
9.3.2 Direct Techniques 310
9.3.2.1 Hill Climbing (HC) Technique 311
9.3.2.2 Perturb & Observe (P&O) Technique 312
9.3.2.3 Incremental Conductance (IC) 313
9.4 Soft Computing (SC) MPPT Techniques 314
9.4.1 MPPT Techniques Based on Artificial Intelligence (AI) 314
9.4.1.1 Fuzzy Logic Control (FLC) Technique 314
9.4.1.2 Artificial Neural Network (ANN) 316
9.4.1.3 Adaptive Neuro Fuzzy Inference System (anfis) 316
9.4.1.4 The Bayesian Network (BN) 317
9.4.2 Bioinspired (BI)-Based MPPT Techniques 317
9.4.2.1 Particle Swarm Optimization (PSO) 317
9.4.2.2 Whale Optimization Algorithm (WOA) 318
9.4.2.3 Moth-Flame Optimization (MFO) 322
9.5 Hybrid MPPT Techniques 322
9.5.1 Conventional with Conventional (CV/CV) 322
9.5.1.1 Fractional Current (FC) with Incremental Conductance (IC) 323
9.5.2 Soft Computing with Soft Computing (SC/SC) 323
9.5.2.1 Fuzzy Logic Control with Genetic Algorithm (FLC/GA) 323
9.5.3 Conventional with Soft Computing (CV/SC) 324
9.5.3.1 Hill Climbing with Fuzzy Logic Control (hc/flc) 324
9.5.4 Other Classifications of Hybrid Techniques 325
9.6 Discussion 325
9.7 Conclusion 327
References 328
10 A Simulation Analysis of Maximum Power Point Tracking Techniques for
Battery-Operated PV Systems 335
Pankaj Sahu and Rajiv Dey
10.1 Introduction 336
10.2 Background of Conventional MPPT Methods 339
10.2.1 Perturb & Observe (P&O) 340
10.2.2 Incremental Conductance (IC) 341
10.2.3 Fractional Short Circuit Current (FSCC) 342
10.2.4 Fractional Open Circuit Voltage (FOCV) 343
10.2.5 Ripple Correlation Control (RCC) 344
10.3 Simulink Model of PV System with MPPT 348
10.4 Results and Discussions 350
10.4.1 (a) Simulation Results for P&O Method 351
10.4.2 (b) Simulation Results for Incremental Conductance (IC) Method 356
10.4.3 (c) Fractional Open Circuit Voltage (FOCV) Method 361
10.4.4 (d) Fractional Short Circuit Current (FSCC) Method 366
10.4.5 (e) Ripple Correlation Control (RCC) 371
10.4.6 (f) Performance Comparison 376
10.5 Conclusion 377
References 378
11 Power Electronics: Technology for Grid-Tied Solar Photovoltaic Power
Generation Systems 381
K. Sateesh Kumar, A. Kirubakaran, N. Subrahmanyam and Umashankar
Subramaniam
11.1 Introduction 382
11.2 Grid-Tied SPVPGS Technology 383
11.2.1 Module Inverters 384
11.2.2 String Inverters 385
11.2.3 Multistring Inverters 386
11.2.4 Central Inverters 386
11.3 Classification of PV Inverter Configurations 386
11.3.1 Single-Stage Isolated Inverter Configuration 387
11.3.2 Single-Stage Nonisolated Inverter Configuration 387
11.3.3 Two-Stage Isolated Inverter Configuration 388
11.3.4 Two-Stage Nonisolated Inverter Configuration 389
11.4 Analysis of Leakage Current in Nonisolated Inverter Topologies 390
11.5 Important Standards Dealing with the Grid-Connected Spvpgs 393
11.5.1 dc Current Injection and Leakage Current 393
11.5.2 Individual Harmonic Distortion and Total Harmonic Distortion 395
11.5.3 Voltage and Frequency Requirements 395
11.5.4 Reactive Power Capability 395
11.5.5 Anti-Islanding Detection 395
11.6 Various Topologies of Grid-Tied SPVPGS 396
11.6.1 AC Module Topologies 396
11.6.2 String Inverter Topologies 399
11.6.3 Multistring Inverter Topologies 405
11.6.4 Central Inverter Topologies 407
11.7 Scope for Future Research 415
11.8 Conclusions 415
References 416
12 Hybrid Solar-Wind System Modeling and Control 419
Issam Attoui, Naceredine Labed, Salim Makhloufi, Mohammed Salah Bouakkaz,
Ahmed Bouraiou, Nadir Boutasseta, Nadir Fergani and Brahim Oudjani
12.1 Introduction 420
12.2 Description of the Proposed System 424
12.3 Model of System 425
12.3.1 Model of Wind Turbine 425
12.3.2 Dynamic Model of the DFIG 426
12.3.3 Mathematic Model of Filter 428
12.3.4 Medium-Term Energy Storage 429
12.3.5 Short-Term Energy Storage 429
12.3.6 Wind Speed Model 430
12.3.7 Photovoltaic Array Model 430
12.3.8 Boost Converter Model 432
12.4 System Control 433
12.4.1 Grid Side Converter GSC Control 434
12.4.2 Rotor Side Converter RSC Control 434
12.4.3 MPPT Control Algorithm for Wind Turbine 435
12.4.4 Two-Level Energy Storage System and Control Strategy 435
12.4.5 PSO-Based GMPPT for PV System 435
12.5 Results and Interpretation 438
12.6 Conclusion 445
References 445
13 Static/Dynamic Economic-Environmental Dispatch Problem Using Cuckoo
Search Algorithm 453
Larouci Benyekhlef, Benasla Lahouari and Sitayeb Abdelkader
13.1 Introduction 454
13.2 Problem Formulation 455
13.2.1 Static Economic Dispatch 455
13.2.2 Dynamic Economic Dispatch (DED) 456
13.3 Calculation of CO2, Ch4, and N2O Emitted During the Combustion 457
13.3.1 Calculation of CO2 457
13.3.2 Calculating CH4 and N2O Emissions 458
13.4 The Cuckoo Search Algorithms 459
13.5 Application 460
13.5.1 Case I: The Static Economic Dispatch 463
13.5.2 Case II: The Dynamic Economic Dispatch 465
13.6 Conclusions 470
References 471
14 Power Electronics Converters for EVs and Wireless Chargers: An Overview
on Existent Technology and Recent Advances 475
Sahand Ghaseminejad Liasi, Faezeh Kardan and Mohammad Tavakoli Bina
14.1 Introduction 476
14.2 Hybrid Power System for EV Technology 477
14.3 DC/AC Converters to Drive the EV 478
14.4 DC/DC Converters for EVs 479
14.4.1 Isolated and Nonisolated DC/DC Converters for EV Application 479
14.4.2 Multi-Input DC/DC Converters in Hybrid EVs 480
14.5 WBG Devices for EV Technology 481
14.6 High-Power and High-Density DC/DC Converters for Hybrid and EV
Applications 483
14.7 dc Fast Chargers and Challenges 484
14.7.1 Fast-Charging Station Architectures 484
14.7.2 Impacts of Fast Chargers on Power Grid 488
14.7.3 Fast-Charging Stations Connected to MV Grid and Challenges 489
14.7.3.1 SST-Based EV Fast-Charging Station 490
14.8 Wireless Charging 491
14.8.1 Short History of Wireless Charging 492
14.8.2 Proficiencies 493
14.8.3 Deficiencies 493
14.9 Standards 494
14.9.1 Sae J 1772 494
14.9.1.1 Revisions of SAE J 1772 495
14.9.2 Iec 62196 495
14.9.3 Sae J 2954 497
14.10 WPT Technology in Practice 497
14.11 Converters 499
14.12 Resonant Network Topologies 501
14.13 Appropriate DC/DC Converters 501
14.14 Single-Ended Wireless EV Charger 502
14.15 WPT and EV Motor Drive Using Single Inverter 505
14.15.1 Problem Definition 507
14.15.2 Wave Shaping Analysis 507
14.15.3 Convertor System 510
14.15.4 WPT System and Motor Drive Integration 512
14.16 Conclusion 513
References 513
15 Recent Advances in Fast-Charging Methods for Electric Vehicles 519
R. Chandrasekaran, M. Sathishkumar Reddy, B. Raja and K. Selvajyothi
15.1 Introduction 519
15.2 Levels of Charging 520
15.2.1 Level 1 Charging 520
15.2.2 Level 2 Charging 520
15.2.3 Level 3 Charging 522
15.3 EV Charging Standards 523
15.4 Battery Charging Methods 524
15.5 Constant Voltage Charging 525
15.6 Constant Current Charging 526
16.7 Constant Current-Constant Voltage (CC-CV) Charging 527
15.8 Multicurrent Level Charging 528
15.9 Pulse Charging 529
15.10 Converters and Its Applications 530
15.10.1 Buck Converter 532
15.10.2 Boost Converter 533
15.10.3 Interleaved Buck Converter 534
15.10.4 Interleaved Boost Converter 535
15.11 Design of DC-DC Converters 536
15.12 Results and Discussions 538
15.13 Conclusion 542
References 543
16 Recent Advances in Wireless Power Transfer for Electric Vehicle Charging
545
Sivagami K., Janamejaya Channegowda and Damodharan P.
16.1 Need for Wireless Power Transfer (WPT) in Electric Vehicles (EV) 546
16.2 WPT Theory 546
16.3 Operating Principle of IPT 550
16.3.1 Ampere's Law 551
16.3.2 Faraday's Law 551
16.4 Types of Wires 552
16.4.1 Litz Wire 552
16.4.2 Litz Magneto-Plate Wire (LMPW) 552
16.4.3 Tubular Conductor 552
16.4.4 REBCO Wire 553
16.4.5 Copper Clad Aluminium Wire 553
16.5 Ferrite Shapes 553
16.6 Couplers 554
16.7 Types of Charging 556
16.7.1 Static Charging 556
16.7.2 Dynamic Charging 558
16.7.3 Quasi-Dynamic Charging 559
16.8 Compensation Techniques 560
16.9 Power Converters in WPT Systems 564
16.9.1 Primary Side Converter 565
16.9.1.1 Unidirectional Charger 565
16.9.1.2 Bidirectional Charger 566
16.9.2 Secondary Side Converter 567
16.9.3 Recent Novel Converter 567
16.10 Standards 567
16.11 Conclusion 570
References 570
17 Flux Link Control Modulation Technique for Improving Power Transfer
Characteristics of Bidirectional DC/DC Converter Used in FCEVS 573
Bandi Mallikarjuna Reddy, Naveenkumar Marati, Kathirvel Karuppazhagi and
Balraj Vaithilingam
17.1 Introduction 574
17.2 GDAB-IBDC Converter 575
17.2.1 Analysis and Modeling of GDAB-IBDC 576
17.3 FLC Modulation Technique 580
17.3.1 Modes of Operation of GDAB-IBDC Converter 582
17.3.2 Analytical Modeling of SPS and FLC Modulation 583
17.4 Dead Band Analysis of GDAB-IBDC Converter 589
17.5 Simulation and Results 591
17.6 Conclusion 598
References 598
Index 601
1 Green Energy Technology-Based Energy-Efficient Appliances for Buildings 1
Avanish Gautam Singh, Rahul Rajeevkumar Urs, Rajeev Kumar Chauhan and
Prabhakar Tiwari
Nomenclature 2
Variables 2
1.1 Balance of System Appliances Needed for Green Energy Systems 3
1.1.1 Grid Interactive Inverters for Buildings with AC Wiring 4
1.1.2 Grid Interactive Inverter with No Battery Backup 4
1.1.3 Main Grid-Interactive Inverter (Hybrid Inverter) 6
1.1.4 DC-DC Converter for DC Building 6
1.1.5 Bidirectional Inverter 10
1.1.6 Battery Bank 11
1.2 Major Green Energy Home Appliances 13
1.2.1 dc Air Conditioners 14
1.2.2 dc Lighting 15
1.2.3 dc Refrigeration 15
1.2.4 Emerging Products for Grid Connected Homes and Businesses 17
1.2.5 Electrical Vehicle 17
1.3 Energy Savings Through Green Appliances 18
1.3.1 Appliance Scheduling 20
1.3.2 A Case Study of a Mid-Ranged Home with Green Home Appliances Versus
Conventional Home Appliances: A Comparison of 1 Day Consumption 23
1.4 Conclusion 26
References 27
2 Integrated Electric Power Systems and Their Power Quality Issues 29
Akhil Gupta, Kamal Kant Sharma and Gagandeep Kaur
2.1 Introduction 30
2.2 Designing of a Hybrid Energy System 32
2.3 Classification of Hybrid Energy Systems 34
2.3.1 Hybrid Wind-Solar System 34
2.3.2 Hybrid Diesel-Wind System 35
2.3.3 Hybrid Wind-Hydro Power System 36
2.3.4 Hybrid Fuel Cell-Solar System 37
2.3.5 Hybrid Solar Thermal System 37
2.4 Power Quality Implications 38
2.4.1 Interruption 39
2.4.2 Undervoltage or Brownout 40
2.4.3 Voltage Sag or Dip 41
2.4.4 Noise 42
2.4.5 Frequency 43
2.4.6 Harmonic 43
2.4.7 Notching 44
2.4.8 Short-Circuit 45
2.4.9 Swell 45
2.4.10 Transient or Surges 45
2.5 Conclusion 62
References 63
3 Renewable Energy in India and World for Sustainable Development 67
Kuldeep Jayaswal, D. K. Palwalia and Aditya Sharma
3.1 Introduction 67
3.2 The Energy Framework 68
3.3 Status of Solar PV Energy 73
3.4 Boons of Renewable Energy 75
3.5 Energy Statistics 76
3.5.1 Coal 76
3.5.2 Natural Gas 78
3.5.3 Biofuels 78
3.5.4 Electricity 80
3.6 Renewable Energy Resources 82
3.7 Conclusion 85
Abbreviations 86
References 86
4 Power Electronics: Technology for Wind Turbines 91
K.T. Maheswari, P. Prem and Jagabar Sathik
4.1 Introduction 92
4.1.1 Overview of Wind Power Generation 93
4.1.1.1 India-Wind Potential 94
4.1.2 Advancement of Wind Power Technologies 95
4.1.3 Power Electronics Technologies for Wind Turbines 96
4.2 Power Converter Topologies for Wind Turbines 98
4.2.1 Matrix Converter 99
4.2.2 Z Source Matrix Converter 100
4.3 Quasi Z Source Direct Matrix Converter 104
4.3.1 Principle of Operation 104
4.3.2 Modulation Strategy 107
4.3.2.1 Closed Loop Control of QZSDMC 107
4.3.3 Simulation Results and Discussion 108
4.4 Conclusion 111
References 111
5 Investigation of Current Controllers for Grid Interactive Inverters 115
Aditi Chatterjee and Kanungo Barada Mohanty
5.1 Introduction 116
5.2 Current Control System for Single-Phase Grid Interactive Inverters 117
5.2.1 Hysteresis Current Controller 119
5.2.2 Proportional Integral Current Control 121
5.2.3 Proportional Resonant Current Control 125
5.2.4 Dead Beat Current Control 129
5.2.5 Model Predictive Current Control 131
5.2.5.1 Analysis of Discretized System Model Dynamics 134
5.2.5.2 Cost Function Assessment 135
5.3 Simulation Results and Analysis 137
5.3.1 Results in Steady-State Operating Mode 138
5.3.2 Results in Dynamic Operating Mode 139
5.3.3 Comparative Assessment of the Current Controllers 145
5.3.4 Hardware Implementation 145
5.3.4.1 Hardware Components 147
5.3.4.2 Digital Implementation 150
5.4 Experimental Results 151
5.5 Future Scope 153
5.6 Conclusion 154
References 155
6 Multilevel Converter for Static Synchronous Compensators:
State-of-the-Art, Applications and Trends 159
Dayane do Carmo Mendonça, Renata Oliveira de Sousa, João Victor Matos
Farias, Heverton Augusto Pereira, Seleme Isaac Seleme Júnior and Allan
Fagner Cupertino
6.1 Introduction 160
6.2 STATCOM Realization 164
6.2.1 Two-Level Converters 164
6.2.2 Early Multilevel Converters 168
6.2.3 Cascaded Multilevel Converters 170
6.2.4 Summary of Topologies 174
6.3 STATCOM Control Objectives 175
6.3.1 Operating Principle 175
6.3.2 Control Objectives 176
6.3.3 Modulation Schemes 179
6.3.3.1 Nlc 181
6.3.3.2 Ps-pwm 181
6.4 Benchmarking of Cascaded Topologies 187
6.4.1 Design Assumptions 187
6.4.1.1 Y-chb 190
6.4.1.2 ¿-chb 191
6.4.1.3 Hb-mmc 193
6.4.1.4 Fb-mmc 196
6.4.2 Current Stress in Semiconductor Devices 198
6.4.3 Current Stress in Submodule Capacitor 201
6.4.4 Comparison of Characteristics 205
6.5 STATCOM Trends 209
6.5.1 Cost Reduction 209
6.5.2 Reliability Requirements 212
6.5.3 Modern Grid Codes Requirements 215
6.5.4 Energy Storage Systems 216
6.6 Conclusions and Future Trends 217
References 218
7 Topologies and Comparative Analysis of Reduced Switch Multilevel
Inverters for Renewable Energy Applications 221
Aishwarya V. and Gnana Sheela K.
7.1 Introduction 221
7.2 Reduced-Switch Multilevel Inverters 224
7.3 Comparative Analysis 251
7.4 Conclusion 258
References 258
8 A Novel Step-Up Switched-Capacitor-Based Multilevel Inverter Topology
Feasible for Green Energy Harvesting 265
Erfan Hallaji and Kazem Varesi
8.1 Introduction 266
8.2 Proposed Basic Topology 269
8.3 Proposed Extended Topology 270
8.3.1 First Algorithm (P 1) 270
8.3.2 Second Algorithm (P 2) 271
8.4 Operational Mode 272
8.4.1 Mode A 275
8.4.2 Mode B 275
8.4.3 Mode c 275
8.4.4 Mode d 276
8.4.5 Mode E 276
8.4.6 Mode F 277
8.4.7 Mode G 277
8.4.8 Mode H 277
8.4.9 Mode I 278
8.4.10 Mode J 278
8.4.11 Mode K 279
8.4.12 Mode l 279
8.4.13 mode m 279
8.4.14 Mode N 280
8.4.15 Mode O 280
8.4.16 Mode P 281
8.4.17 Mode Q 281
8.5 Standing Voltage 282
8.5.1 Standing Voltage (SV) for the First Algorithm (P 1) 283
8.5.2 Standing Voltage (SV) for the Second Algorithm (P 2) 283
8.6 Proposed Cascaded Topology 283
8.6.1 First Algorithm (S 1) 284
8.6.2 Second Algorithm (S 2) 284
8.6.3 Third Algorithm (S 3) 284
8.6.4 Fourth Algorithm (S 4) 285
8.6.5 Fifth Algorithm (S 5) 285
8.6.6 Sixth Algorithm (S 6) 286
8.7 Modulation Method 286
8.8 Efficiency and Losses Analysis 287
8.8.1 Switching Losses 287
8.8.2 Conduction Losses 288
8.8.3 Ripple Losses 288
8.8.4 Efficiency 288
8.9 Capacitor Design 289
8.10 Comparison Results 291
8.11 Simulation Results 295
8.12 Conclusion 299
References 299
9 Classification of Conventional and Modern Maximum Power Point Tracking
Techniques for Photovoltaic Energy Generation Systems 303
Mohammed Salah Bouakkaz, Ahcene Boukadoum, Omar Boudebbouz, Nadir
Boutasseta, Issam Attoui and Ahmed Bouraiou
9.1 Introduction 304
9.1.1 Classification of MPPT Techniques 306
9.1.2 MPPT Algorithms Based on PV Side Parameters 307
9.2 MPPT Algorithms Based on Load Side Parameters 307
9.3 Conventional MPPT Algorithms 308
9.3.1 Indirect Techniques 308
9.3.1.1 MPPT Based on Constant Voltage (CV) 308
9.3.1.2 Fractional Voltage (FV) Technique 309
9.3.1.3 Fractional Currents (FC) Technique 310
9.3.2 Direct Techniques 310
9.3.2.1 Hill Climbing (HC) Technique 311
9.3.2.2 Perturb & Observe (P&O) Technique 312
9.3.2.3 Incremental Conductance (IC) 313
9.4 Soft Computing (SC) MPPT Techniques 314
9.4.1 MPPT Techniques Based on Artificial Intelligence (AI) 314
9.4.1.1 Fuzzy Logic Control (FLC) Technique 314
9.4.1.2 Artificial Neural Network (ANN) 316
9.4.1.3 Adaptive Neuro Fuzzy Inference System (anfis) 316
9.4.1.4 The Bayesian Network (BN) 317
9.4.2 Bioinspired (BI)-Based MPPT Techniques 317
9.4.2.1 Particle Swarm Optimization (PSO) 317
9.4.2.2 Whale Optimization Algorithm (WOA) 318
9.4.2.3 Moth-Flame Optimization (MFO) 322
9.5 Hybrid MPPT Techniques 322
9.5.1 Conventional with Conventional (CV/CV) 322
9.5.1.1 Fractional Current (FC) with Incremental Conductance (IC) 323
9.5.2 Soft Computing with Soft Computing (SC/SC) 323
9.5.2.1 Fuzzy Logic Control with Genetic Algorithm (FLC/GA) 323
9.5.3 Conventional with Soft Computing (CV/SC) 324
9.5.3.1 Hill Climbing with Fuzzy Logic Control (hc/flc) 324
9.5.4 Other Classifications of Hybrid Techniques 325
9.6 Discussion 325
9.7 Conclusion 327
References 328
10 A Simulation Analysis of Maximum Power Point Tracking Techniques for
Battery-Operated PV Systems 335
Pankaj Sahu and Rajiv Dey
10.1 Introduction 336
10.2 Background of Conventional MPPT Methods 339
10.2.1 Perturb & Observe (P&O) 340
10.2.2 Incremental Conductance (IC) 341
10.2.3 Fractional Short Circuit Current (FSCC) 342
10.2.4 Fractional Open Circuit Voltage (FOCV) 343
10.2.5 Ripple Correlation Control (RCC) 344
10.3 Simulink Model of PV System with MPPT 348
10.4 Results and Discussions 350
10.4.1 (a) Simulation Results for P&O Method 351
10.4.2 (b) Simulation Results for Incremental Conductance (IC) Method 356
10.4.3 (c) Fractional Open Circuit Voltage (FOCV) Method 361
10.4.4 (d) Fractional Short Circuit Current (FSCC) Method 366
10.4.5 (e) Ripple Correlation Control (RCC) 371
10.4.6 (f) Performance Comparison 376
10.5 Conclusion 377
References 378
11 Power Electronics: Technology for Grid-Tied Solar Photovoltaic Power
Generation Systems 381
K. Sateesh Kumar, A. Kirubakaran, N. Subrahmanyam and Umashankar
Subramaniam
11.1 Introduction 382
11.2 Grid-Tied SPVPGS Technology 383
11.2.1 Module Inverters 384
11.2.2 String Inverters 385
11.2.3 Multistring Inverters 386
11.2.4 Central Inverters 386
11.3 Classification of PV Inverter Configurations 386
11.3.1 Single-Stage Isolated Inverter Configuration 387
11.3.2 Single-Stage Nonisolated Inverter Configuration 387
11.3.3 Two-Stage Isolated Inverter Configuration 388
11.3.4 Two-Stage Nonisolated Inverter Configuration 389
11.4 Analysis of Leakage Current in Nonisolated Inverter Topologies 390
11.5 Important Standards Dealing with the Grid-Connected Spvpgs 393
11.5.1 dc Current Injection and Leakage Current 393
11.5.2 Individual Harmonic Distortion and Total Harmonic Distortion 395
11.5.3 Voltage and Frequency Requirements 395
11.5.4 Reactive Power Capability 395
11.5.5 Anti-Islanding Detection 395
11.6 Various Topologies of Grid-Tied SPVPGS 396
11.6.1 AC Module Topologies 396
11.6.2 String Inverter Topologies 399
11.6.3 Multistring Inverter Topologies 405
11.6.4 Central Inverter Topologies 407
11.7 Scope for Future Research 415
11.8 Conclusions 415
References 416
12 Hybrid Solar-Wind System Modeling and Control 419
Issam Attoui, Naceredine Labed, Salim Makhloufi, Mohammed Salah Bouakkaz,
Ahmed Bouraiou, Nadir Boutasseta, Nadir Fergani and Brahim Oudjani
12.1 Introduction 420
12.2 Description of the Proposed System 424
12.3 Model of System 425
12.3.1 Model of Wind Turbine 425
12.3.2 Dynamic Model of the DFIG 426
12.3.3 Mathematic Model of Filter 428
12.3.4 Medium-Term Energy Storage 429
12.3.5 Short-Term Energy Storage 429
12.3.6 Wind Speed Model 430
12.3.7 Photovoltaic Array Model 430
12.3.8 Boost Converter Model 432
12.4 System Control 433
12.4.1 Grid Side Converter GSC Control 434
12.4.2 Rotor Side Converter RSC Control 434
12.4.3 MPPT Control Algorithm for Wind Turbine 435
12.4.4 Two-Level Energy Storage System and Control Strategy 435
12.4.5 PSO-Based GMPPT for PV System 435
12.5 Results and Interpretation 438
12.6 Conclusion 445
References 445
13 Static/Dynamic Economic-Environmental Dispatch Problem Using Cuckoo
Search Algorithm 453
Larouci Benyekhlef, Benasla Lahouari and Sitayeb Abdelkader
13.1 Introduction 454
13.2 Problem Formulation 455
13.2.1 Static Economic Dispatch 455
13.2.2 Dynamic Economic Dispatch (DED) 456
13.3 Calculation of CO2, Ch4, and N2O Emitted During the Combustion 457
13.3.1 Calculation of CO2 457
13.3.2 Calculating CH4 and N2O Emissions 458
13.4 The Cuckoo Search Algorithms 459
13.5 Application 460
13.5.1 Case I: The Static Economic Dispatch 463
13.5.2 Case II: The Dynamic Economic Dispatch 465
13.6 Conclusions 470
References 471
14 Power Electronics Converters for EVs and Wireless Chargers: An Overview
on Existent Technology and Recent Advances 475
Sahand Ghaseminejad Liasi, Faezeh Kardan and Mohammad Tavakoli Bina
14.1 Introduction 476
14.2 Hybrid Power System for EV Technology 477
14.3 DC/AC Converters to Drive the EV 478
14.4 DC/DC Converters for EVs 479
14.4.1 Isolated and Nonisolated DC/DC Converters for EV Application 479
14.4.2 Multi-Input DC/DC Converters in Hybrid EVs 480
14.5 WBG Devices for EV Technology 481
14.6 High-Power and High-Density DC/DC Converters for Hybrid and EV
Applications 483
14.7 dc Fast Chargers and Challenges 484
14.7.1 Fast-Charging Station Architectures 484
14.7.2 Impacts of Fast Chargers on Power Grid 488
14.7.3 Fast-Charging Stations Connected to MV Grid and Challenges 489
14.7.3.1 SST-Based EV Fast-Charging Station 490
14.8 Wireless Charging 491
14.8.1 Short History of Wireless Charging 492
14.8.2 Proficiencies 493
14.8.3 Deficiencies 493
14.9 Standards 494
14.9.1 Sae J 1772 494
14.9.1.1 Revisions of SAE J 1772 495
14.9.2 Iec 62196 495
14.9.3 Sae J 2954 497
14.10 WPT Technology in Practice 497
14.11 Converters 499
14.12 Resonant Network Topologies 501
14.13 Appropriate DC/DC Converters 501
14.14 Single-Ended Wireless EV Charger 502
14.15 WPT and EV Motor Drive Using Single Inverter 505
14.15.1 Problem Definition 507
14.15.2 Wave Shaping Analysis 507
14.15.3 Convertor System 510
14.15.4 WPT System and Motor Drive Integration 512
14.16 Conclusion 513
References 513
15 Recent Advances in Fast-Charging Methods for Electric Vehicles 519
R. Chandrasekaran, M. Sathishkumar Reddy, B. Raja and K. Selvajyothi
15.1 Introduction 519
15.2 Levels of Charging 520
15.2.1 Level 1 Charging 520
15.2.2 Level 2 Charging 520
15.2.3 Level 3 Charging 522
15.3 EV Charging Standards 523
15.4 Battery Charging Methods 524
15.5 Constant Voltage Charging 525
15.6 Constant Current Charging 526
16.7 Constant Current-Constant Voltage (CC-CV) Charging 527
15.8 Multicurrent Level Charging 528
15.9 Pulse Charging 529
15.10 Converters and Its Applications 530
15.10.1 Buck Converter 532
15.10.2 Boost Converter 533
15.10.3 Interleaved Buck Converter 534
15.10.4 Interleaved Boost Converter 535
15.11 Design of DC-DC Converters 536
15.12 Results and Discussions 538
15.13 Conclusion 542
References 543
16 Recent Advances in Wireless Power Transfer for Electric Vehicle Charging
545
Sivagami K., Janamejaya Channegowda and Damodharan P.
16.1 Need for Wireless Power Transfer (WPT) in Electric Vehicles (EV) 546
16.2 WPT Theory 546
16.3 Operating Principle of IPT 550
16.3.1 Ampere's Law 551
16.3.2 Faraday's Law 551
16.4 Types of Wires 552
16.4.1 Litz Wire 552
16.4.2 Litz Magneto-Plate Wire (LMPW) 552
16.4.3 Tubular Conductor 552
16.4.4 REBCO Wire 553
16.4.5 Copper Clad Aluminium Wire 553
16.5 Ferrite Shapes 553
16.6 Couplers 554
16.7 Types of Charging 556
16.7.1 Static Charging 556
16.7.2 Dynamic Charging 558
16.7.3 Quasi-Dynamic Charging 559
16.8 Compensation Techniques 560
16.9 Power Converters in WPT Systems 564
16.9.1 Primary Side Converter 565
16.9.1.1 Unidirectional Charger 565
16.9.1.2 Bidirectional Charger 566
16.9.2 Secondary Side Converter 567
16.9.3 Recent Novel Converter 567
16.10 Standards 567
16.11 Conclusion 570
References 570
17 Flux Link Control Modulation Technique for Improving Power Transfer
Characteristics of Bidirectional DC/DC Converter Used in FCEVS 573
Bandi Mallikarjuna Reddy, Naveenkumar Marati, Kathirvel Karuppazhagi and
Balraj Vaithilingam
17.1 Introduction 574
17.2 GDAB-IBDC Converter 575
17.2.1 Analysis and Modeling of GDAB-IBDC 576
17.3 FLC Modulation Technique 580
17.3.1 Modes of Operation of GDAB-IBDC Converter 582
17.3.2 Analytical Modeling of SPS and FLC Modulation 583
17.4 Dead Band Analysis of GDAB-IBDC Converter 589
17.5 Simulation and Results 591
17.6 Conclusion 598
References 598
Index 601
Preface xvii
1 Green Energy Technology-Based Energy-Efficient Appliances for Buildings 1
Avanish Gautam Singh, Rahul Rajeevkumar Urs, Rajeev Kumar Chauhan and
Prabhakar Tiwari
Nomenclature 2
Variables 2
1.1 Balance of System Appliances Needed for Green Energy Systems 3
1.1.1 Grid Interactive Inverters for Buildings with AC Wiring 4
1.1.2 Grid Interactive Inverter with No Battery Backup 4
1.1.3 Main Grid-Interactive Inverter (Hybrid Inverter) 6
1.1.4 DC-DC Converter for DC Building 6
1.1.5 Bidirectional Inverter 10
1.1.6 Battery Bank 11
1.2 Major Green Energy Home Appliances 13
1.2.1 dc Air Conditioners 14
1.2.2 dc Lighting 15
1.2.3 dc Refrigeration 15
1.2.4 Emerging Products for Grid Connected Homes and Businesses 17
1.2.5 Electrical Vehicle 17
1.3 Energy Savings Through Green Appliances 18
1.3.1 Appliance Scheduling 20
1.3.2 A Case Study of a Mid-Ranged Home with Green Home Appliances Versus
Conventional Home Appliances: A Comparison of 1 Day Consumption 23
1.4 Conclusion 26
References 27
2 Integrated Electric Power Systems and Their Power Quality Issues 29
Akhil Gupta, Kamal Kant Sharma and Gagandeep Kaur
2.1 Introduction 30
2.2 Designing of a Hybrid Energy System 32
2.3 Classification of Hybrid Energy Systems 34
2.3.1 Hybrid Wind-Solar System 34
2.3.2 Hybrid Diesel-Wind System 35
2.3.3 Hybrid Wind-Hydro Power System 36
2.3.4 Hybrid Fuel Cell-Solar System 37
2.3.5 Hybrid Solar Thermal System 37
2.4 Power Quality Implications 38
2.4.1 Interruption 39
2.4.2 Undervoltage or Brownout 40
2.4.3 Voltage Sag or Dip 41
2.4.4 Noise 42
2.4.5 Frequency 43
2.4.6 Harmonic 43
2.4.7 Notching 44
2.4.8 Short-Circuit 45
2.4.9 Swell 45
2.4.10 Transient or Surges 45
2.5 Conclusion 62
References 63
3 Renewable Energy in India and World for Sustainable Development 67
Kuldeep Jayaswal, D. K. Palwalia and Aditya Sharma
3.1 Introduction 67
3.2 The Energy Framework 68
3.3 Status of Solar PV Energy 73
3.4 Boons of Renewable Energy 75
3.5 Energy Statistics 76
3.5.1 Coal 76
3.5.2 Natural Gas 78
3.5.3 Biofuels 78
3.5.4 Electricity 80
3.6 Renewable Energy Resources 82
3.7 Conclusion 85
Abbreviations 86
References 86
4 Power Electronics: Technology for Wind Turbines 91
K.T. Maheswari, P. Prem and Jagabar Sathik
4.1 Introduction 92
4.1.1 Overview of Wind Power Generation 93
4.1.1.1 India-Wind Potential 94
4.1.2 Advancement of Wind Power Technologies 95
4.1.3 Power Electronics Technologies for Wind Turbines 96
4.2 Power Converter Topologies for Wind Turbines 98
4.2.1 Matrix Converter 99
4.2.2 Z Source Matrix Converter 100
4.3 Quasi Z Source Direct Matrix Converter 104
4.3.1 Principle of Operation 104
4.3.2 Modulation Strategy 107
4.3.2.1 Closed Loop Control of QZSDMC 107
4.3.3 Simulation Results and Discussion 108
4.4 Conclusion 111
References 111
5 Investigation of Current Controllers for Grid Interactive Inverters 115
Aditi Chatterjee and Kanungo Barada Mohanty
5.1 Introduction 116
5.2 Current Control System for Single-Phase Grid Interactive Inverters 117
5.2.1 Hysteresis Current Controller 119
5.2.2 Proportional Integral Current Control 121
5.2.3 Proportional Resonant Current Control 125
5.2.4 Dead Beat Current Control 129
5.2.5 Model Predictive Current Control 131
5.2.5.1 Analysis of Discretized System Model Dynamics 134
5.2.5.2 Cost Function Assessment 135
5.3 Simulation Results and Analysis 137
5.3.1 Results in Steady-State Operating Mode 138
5.3.2 Results in Dynamic Operating Mode 139
5.3.3 Comparative Assessment of the Current Controllers 145
5.3.4 Hardware Implementation 145
5.3.4.1 Hardware Components 147
5.3.4.2 Digital Implementation 150
5.4 Experimental Results 151
5.5 Future Scope 153
5.6 Conclusion 154
References 155
6 Multilevel Converter for Static Synchronous Compensators:
State-of-the-Art, Applications and Trends 159
Dayane do Carmo Mendonça, Renata Oliveira de Sousa, João Victor Matos
Farias, Heverton Augusto Pereira, Seleme Isaac Seleme Júnior and Allan
Fagner Cupertino
6.1 Introduction 160
6.2 STATCOM Realization 164
6.2.1 Two-Level Converters 164
6.2.2 Early Multilevel Converters 168
6.2.3 Cascaded Multilevel Converters 170
6.2.4 Summary of Topologies 174
6.3 STATCOM Control Objectives 175
6.3.1 Operating Principle 175
6.3.2 Control Objectives 176
6.3.3 Modulation Schemes 179
6.3.3.1 Nlc 181
6.3.3.2 Ps-pwm 181
6.4 Benchmarking of Cascaded Topologies 187
6.4.1 Design Assumptions 187
6.4.1.1 Y-chb 190
6.4.1.2 ¿-chb 191
6.4.1.3 Hb-mmc 193
6.4.1.4 Fb-mmc 196
6.4.2 Current Stress in Semiconductor Devices 198
6.4.3 Current Stress in Submodule Capacitor 201
6.4.4 Comparison of Characteristics 205
6.5 STATCOM Trends 209
6.5.1 Cost Reduction 209
6.5.2 Reliability Requirements 212
6.5.3 Modern Grid Codes Requirements 215
6.5.4 Energy Storage Systems 216
6.6 Conclusions and Future Trends 217
References 218
7 Topologies and Comparative Analysis of Reduced Switch Multilevel
Inverters for Renewable Energy Applications 221
Aishwarya V. and Gnana Sheela K.
7.1 Introduction 221
7.2 Reduced-Switch Multilevel Inverters 224
7.3 Comparative Analysis 251
7.4 Conclusion 258
References 258
8 A Novel Step-Up Switched-Capacitor-Based Multilevel Inverter Topology
Feasible for Green Energy Harvesting 265
Erfan Hallaji and Kazem Varesi
8.1 Introduction 266
8.2 Proposed Basic Topology 269
8.3 Proposed Extended Topology 270
8.3.1 First Algorithm (P 1) 270
8.3.2 Second Algorithm (P 2) 271
8.4 Operational Mode 272
8.4.1 Mode A 275
8.4.2 Mode B 275
8.4.3 Mode c 275
8.4.4 Mode d 276
8.4.5 Mode E 276
8.4.6 Mode F 277
8.4.7 Mode G 277
8.4.8 Mode H 277
8.4.9 Mode I 278
8.4.10 Mode J 278
8.4.11 Mode K 279
8.4.12 Mode l 279
8.4.13 mode m 279
8.4.14 Mode N 280
8.4.15 Mode O 280
8.4.16 Mode P 281
8.4.17 Mode Q 281
8.5 Standing Voltage 282
8.5.1 Standing Voltage (SV) for the First Algorithm (P 1) 283
8.5.2 Standing Voltage (SV) for the Second Algorithm (P 2) 283
8.6 Proposed Cascaded Topology 283
8.6.1 First Algorithm (S 1) 284
8.6.2 Second Algorithm (S 2) 284
8.6.3 Third Algorithm (S 3) 284
8.6.4 Fourth Algorithm (S 4) 285
8.6.5 Fifth Algorithm (S 5) 285
8.6.6 Sixth Algorithm (S 6) 286
8.7 Modulation Method 286
8.8 Efficiency and Losses Analysis 287
8.8.1 Switching Losses 287
8.8.2 Conduction Losses 288
8.8.3 Ripple Losses 288
8.8.4 Efficiency 288
8.9 Capacitor Design 289
8.10 Comparison Results 291
8.11 Simulation Results 295
8.12 Conclusion 299
References 299
9 Classification of Conventional and Modern Maximum Power Point Tracking
Techniques for Photovoltaic Energy Generation Systems 303
Mohammed Salah Bouakkaz, Ahcene Boukadoum, Omar Boudebbouz, Nadir
Boutasseta, Issam Attoui and Ahmed Bouraiou
9.1 Introduction 304
9.1.1 Classification of MPPT Techniques 306
9.1.2 MPPT Algorithms Based on PV Side Parameters 307
9.2 MPPT Algorithms Based on Load Side Parameters 307
9.3 Conventional MPPT Algorithms 308
9.3.1 Indirect Techniques 308
9.3.1.1 MPPT Based on Constant Voltage (CV) 308
9.3.1.2 Fractional Voltage (FV) Technique 309
9.3.1.3 Fractional Currents (FC) Technique 310
9.3.2 Direct Techniques 310
9.3.2.1 Hill Climbing (HC) Technique 311
9.3.2.2 Perturb & Observe (P&O) Technique 312
9.3.2.3 Incremental Conductance (IC) 313
9.4 Soft Computing (SC) MPPT Techniques 314
9.4.1 MPPT Techniques Based on Artificial Intelligence (AI) 314
9.4.1.1 Fuzzy Logic Control (FLC) Technique 314
9.4.1.2 Artificial Neural Network (ANN) 316
9.4.1.3 Adaptive Neuro Fuzzy Inference System (anfis) 316
9.4.1.4 The Bayesian Network (BN) 317
9.4.2 Bioinspired (BI)-Based MPPT Techniques 317
9.4.2.1 Particle Swarm Optimization (PSO) 317
9.4.2.2 Whale Optimization Algorithm (WOA) 318
9.4.2.3 Moth-Flame Optimization (MFO) 322
9.5 Hybrid MPPT Techniques 322
9.5.1 Conventional with Conventional (CV/CV) 322
9.5.1.1 Fractional Current (FC) with Incremental Conductance (IC) 323
9.5.2 Soft Computing with Soft Computing (SC/SC) 323
9.5.2.1 Fuzzy Logic Control with Genetic Algorithm (FLC/GA) 323
9.5.3 Conventional with Soft Computing (CV/SC) 324
9.5.3.1 Hill Climbing with Fuzzy Logic Control (hc/flc) 324
9.5.4 Other Classifications of Hybrid Techniques 325
9.6 Discussion 325
9.7 Conclusion 327
References 328
10 A Simulation Analysis of Maximum Power Point Tracking Techniques for
Battery-Operated PV Systems 335
Pankaj Sahu and Rajiv Dey
10.1 Introduction 336
10.2 Background of Conventional MPPT Methods 339
10.2.1 Perturb & Observe (P&O) 340
10.2.2 Incremental Conductance (IC) 341
10.2.3 Fractional Short Circuit Current (FSCC) 342
10.2.4 Fractional Open Circuit Voltage (FOCV) 343
10.2.5 Ripple Correlation Control (RCC) 344
10.3 Simulink Model of PV System with MPPT 348
10.4 Results and Discussions 350
10.4.1 (a) Simulation Results for P&O Method 351
10.4.2 (b) Simulation Results for Incremental Conductance (IC) Method 356
10.4.3 (c) Fractional Open Circuit Voltage (FOCV) Method 361
10.4.4 (d) Fractional Short Circuit Current (FSCC) Method 366
10.4.5 (e) Ripple Correlation Control (RCC) 371
10.4.6 (f) Performance Comparison 376
10.5 Conclusion 377
References 378
11 Power Electronics: Technology for Grid-Tied Solar Photovoltaic Power
Generation Systems 381
K. Sateesh Kumar, A. Kirubakaran, N. Subrahmanyam and Umashankar
Subramaniam
11.1 Introduction 382
11.2 Grid-Tied SPVPGS Technology 383
11.2.1 Module Inverters 384
11.2.2 String Inverters 385
11.2.3 Multistring Inverters 386
11.2.4 Central Inverters 386
11.3 Classification of PV Inverter Configurations 386
11.3.1 Single-Stage Isolated Inverter Configuration 387
11.3.2 Single-Stage Nonisolated Inverter Configuration 387
11.3.3 Two-Stage Isolated Inverter Configuration 388
11.3.4 Two-Stage Nonisolated Inverter Configuration 389
11.4 Analysis of Leakage Current in Nonisolated Inverter Topologies 390
11.5 Important Standards Dealing with the Grid-Connected Spvpgs 393
11.5.1 dc Current Injection and Leakage Current 393
11.5.2 Individual Harmonic Distortion and Total Harmonic Distortion 395
11.5.3 Voltage and Frequency Requirements 395
11.5.4 Reactive Power Capability 395
11.5.5 Anti-Islanding Detection 395
11.6 Various Topologies of Grid-Tied SPVPGS 396
11.6.1 AC Module Topologies 396
11.6.2 String Inverter Topologies 399
11.6.3 Multistring Inverter Topologies 405
11.6.4 Central Inverter Topologies 407
11.7 Scope for Future Research 415
11.8 Conclusions 415
References 416
12 Hybrid Solar-Wind System Modeling and Control 419
Issam Attoui, Naceredine Labed, Salim Makhloufi, Mohammed Salah Bouakkaz,
Ahmed Bouraiou, Nadir Boutasseta, Nadir Fergani and Brahim Oudjani
12.1 Introduction 420
12.2 Description of the Proposed System 424
12.3 Model of System 425
12.3.1 Model of Wind Turbine 425
12.3.2 Dynamic Model of the DFIG 426
12.3.3 Mathematic Model of Filter 428
12.3.4 Medium-Term Energy Storage 429
12.3.5 Short-Term Energy Storage 429
12.3.6 Wind Speed Model 430
12.3.7 Photovoltaic Array Model 430
12.3.8 Boost Converter Model 432
12.4 System Control 433
12.4.1 Grid Side Converter GSC Control 434
12.4.2 Rotor Side Converter RSC Control 434
12.4.3 MPPT Control Algorithm for Wind Turbine 435
12.4.4 Two-Level Energy Storage System and Control Strategy 435
12.4.5 PSO-Based GMPPT for PV System 435
12.5 Results and Interpretation 438
12.6 Conclusion 445
References 445
13 Static/Dynamic Economic-Environmental Dispatch Problem Using Cuckoo
Search Algorithm 453
Larouci Benyekhlef, Benasla Lahouari and Sitayeb Abdelkader
13.1 Introduction 454
13.2 Problem Formulation 455
13.2.1 Static Economic Dispatch 455
13.2.2 Dynamic Economic Dispatch (DED) 456
13.3 Calculation of CO2, Ch4, and N2O Emitted During the Combustion 457
13.3.1 Calculation of CO2 457
13.3.2 Calculating CH4 and N2O Emissions 458
13.4 The Cuckoo Search Algorithms 459
13.5 Application 460
13.5.1 Case I: The Static Economic Dispatch 463
13.5.2 Case II: The Dynamic Economic Dispatch 465
13.6 Conclusions 470
References 471
14 Power Electronics Converters for EVs and Wireless Chargers: An Overview
on Existent Technology and Recent Advances 475
Sahand Ghaseminejad Liasi, Faezeh Kardan and Mohammad Tavakoli Bina
14.1 Introduction 476
14.2 Hybrid Power System for EV Technology 477
14.3 DC/AC Converters to Drive the EV 478
14.4 DC/DC Converters for EVs 479
14.4.1 Isolated and Nonisolated DC/DC Converters for EV Application 479
14.4.2 Multi-Input DC/DC Converters in Hybrid EVs 480
14.5 WBG Devices for EV Technology 481
14.6 High-Power and High-Density DC/DC Converters for Hybrid and EV
Applications 483
14.7 dc Fast Chargers and Challenges 484
14.7.1 Fast-Charging Station Architectures 484
14.7.2 Impacts of Fast Chargers on Power Grid 488
14.7.3 Fast-Charging Stations Connected to MV Grid and Challenges 489
14.7.3.1 SST-Based EV Fast-Charging Station 490
14.8 Wireless Charging 491
14.8.1 Short History of Wireless Charging 492
14.8.2 Proficiencies 493
14.8.3 Deficiencies 493
14.9 Standards 494
14.9.1 Sae J 1772 494
14.9.1.1 Revisions of SAE J 1772 495
14.9.2 Iec 62196 495
14.9.3 Sae J 2954 497
14.10 WPT Technology in Practice 497
14.11 Converters 499
14.12 Resonant Network Topologies 501
14.13 Appropriate DC/DC Converters 501
14.14 Single-Ended Wireless EV Charger 502
14.15 WPT and EV Motor Drive Using Single Inverter 505
14.15.1 Problem Definition 507
14.15.2 Wave Shaping Analysis 507
14.15.3 Convertor System 510
14.15.4 WPT System and Motor Drive Integration 512
14.16 Conclusion 513
References 513
15 Recent Advances in Fast-Charging Methods for Electric Vehicles 519
R. Chandrasekaran, M. Sathishkumar Reddy, B. Raja and K. Selvajyothi
15.1 Introduction 519
15.2 Levels of Charging 520
15.2.1 Level 1 Charging 520
15.2.2 Level 2 Charging 520
15.2.3 Level 3 Charging 522
15.3 EV Charging Standards 523
15.4 Battery Charging Methods 524
15.5 Constant Voltage Charging 525
15.6 Constant Current Charging 526
16.7 Constant Current-Constant Voltage (CC-CV) Charging 527
15.8 Multicurrent Level Charging 528
15.9 Pulse Charging 529
15.10 Converters and Its Applications 530
15.10.1 Buck Converter 532
15.10.2 Boost Converter 533
15.10.3 Interleaved Buck Converter 534
15.10.4 Interleaved Boost Converter 535
15.11 Design of DC-DC Converters 536
15.12 Results and Discussions 538
15.13 Conclusion 542
References 543
16 Recent Advances in Wireless Power Transfer for Electric Vehicle Charging
545
Sivagami K., Janamejaya Channegowda and Damodharan P.
16.1 Need for Wireless Power Transfer (WPT) in Electric Vehicles (EV) 546
16.2 WPT Theory 546
16.3 Operating Principle of IPT 550
16.3.1 Ampere's Law 551
16.3.2 Faraday's Law 551
16.4 Types of Wires 552
16.4.1 Litz Wire 552
16.4.2 Litz Magneto-Plate Wire (LMPW) 552
16.4.3 Tubular Conductor 552
16.4.4 REBCO Wire 553
16.4.5 Copper Clad Aluminium Wire 553
16.5 Ferrite Shapes 553
16.6 Couplers 554
16.7 Types of Charging 556
16.7.1 Static Charging 556
16.7.2 Dynamic Charging 558
16.7.3 Quasi-Dynamic Charging 559
16.8 Compensation Techniques 560
16.9 Power Converters in WPT Systems 564
16.9.1 Primary Side Converter 565
16.9.1.1 Unidirectional Charger 565
16.9.1.2 Bidirectional Charger 566
16.9.2 Secondary Side Converter 567
16.9.3 Recent Novel Converter 567
16.10 Standards 567
16.11 Conclusion 570
References 570
17 Flux Link Control Modulation Technique for Improving Power Transfer
Characteristics of Bidirectional DC/DC Converter Used in FCEVS 573
Bandi Mallikarjuna Reddy, Naveenkumar Marati, Kathirvel Karuppazhagi and
Balraj Vaithilingam
17.1 Introduction 574
17.2 GDAB-IBDC Converter 575
17.2.1 Analysis and Modeling of GDAB-IBDC 576
17.3 FLC Modulation Technique 580
17.3.1 Modes of Operation of GDAB-IBDC Converter 582
17.3.2 Analytical Modeling of SPS and FLC Modulation 583
17.4 Dead Band Analysis of GDAB-IBDC Converter 589
17.5 Simulation and Results 591
17.6 Conclusion 598
References 598
Index 601
1 Green Energy Technology-Based Energy-Efficient Appliances for Buildings 1
Avanish Gautam Singh, Rahul Rajeevkumar Urs, Rajeev Kumar Chauhan and
Prabhakar Tiwari
Nomenclature 2
Variables 2
1.1 Balance of System Appliances Needed for Green Energy Systems 3
1.1.1 Grid Interactive Inverters for Buildings with AC Wiring 4
1.1.2 Grid Interactive Inverter with No Battery Backup 4
1.1.3 Main Grid-Interactive Inverter (Hybrid Inverter) 6
1.1.4 DC-DC Converter for DC Building 6
1.1.5 Bidirectional Inverter 10
1.1.6 Battery Bank 11
1.2 Major Green Energy Home Appliances 13
1.2.1 dc Air Conditioners 14
1.2.2 dc Lighting 15
1.2.3 dc Refrigeration 15
1.2.4 Emerging Products for Grid Connected Homes and Businesses 17
1.2.5 Electrical Vehicle 17
1.3 Energy Savings Through Green Appliances 18
1.3.1 Appliance Scheduling 20
1.3.2 A Case Study of a Mid-Ranged Home with Green Home Appliances Versus
Conventional Home Appliances: A Comparison of 1 Day Consumption 23
1.4 Conclusion 26
References 27
2 Integrated Electric Power Systems and Their Power Quality Issues 29
Akhil Gupta, Kamal Kant Sharma and Gagandeep Kaur
2.1 Introduction 30
2.2 Designing of a Hybrid Energy System 32
2.3 Classification of Hybrid Energy Systems 34
2.3.1 Hybrid Wind-Solar System 34
2.3.2 Hybrid Diesel-Wind System 35
2.3.3 Hybrid Wind-Hydro Power System 36
2.3.4 Hybrid Fuel Cell-Solar System 37
2.3.5 Hybrid Solar Thermal System 37
2.4 Power Quality Implications 38
2.4.1 Interruption 39
2.4.2 Undervoltage or Brownout 40
2.4.3 Voltage Sag or Dip 41
2.4.4 Noise 42
2.4.5 Frequency 43
2.4.6 Harmonic 43
2.4.7 Notching 44
2.4.8 Short-Circuit 45
2.4.9 Swell 45
2.4.10 Transient or Surges 45
2.5 Conclusion 62
References 63
3 Renewable Energy in India and World for Sustainable Development 67
Kuldeep Jayaswal, D. K. Palwalia and Aditya Sharma
3.1 Introduction 67
3.2 The Energy Framework 68
3.3 Status of Solar PV Energy 73
3.4 Boons of Renewable Energy 75
3.5 Energy Statistics 76
3.5.1 Coal 76
3.5.2 Natural Gas 78
3.5.3 Biofuels 78
3.5.4 Electricity 80
3.6 Renewable Energy Resources 82
3.7 Conclusion 85
Abbreviations 86
References 86
4 Power Electronics: Technology for Wind Turbines 91
K.T. Maheswari, P. Prem and Jagabar Sathik
4.1 Introduction 92
4.1.1 Overview of Wind Power Generation 93
4.1.1.1 India-Wind Potential 94
4.1.2 Advancement of Wind Power Technologies 95
4.1.3 Power Electronics Technologies for Wind Turbines 96
4.2 Power Converter Topologies for Wind Turbines 98
4.2.1 Matrix Converter 99
4.2.2 Z Source Matrix Converter 100
4.3 Quasi Z Source Direct Matrix Converter 104
4.3.1 Principle of Operation 104
4.3.2 Modulation Strategy 107
4.3.2.1 Closed Loop Control of QZSDMC 107
4.3.3 Simulation Results and Discussion 108
4.4 Conclusion 111
References 111
5 Investigation of Current Controllers for Grid Interactive Inverters 115
Aditi Chatterjee and Kanungo Barada Mohanty
5.1 Introduction 116
5.2 Current Control System for Single-Phase Grid Interactive Inverters 117
5.2.1 Hysteresis Current Controller 119
5.2.2 Proportional Integral Current Control 121
5.2.3 Proportional Resonant Current Control 125
5.2.4 Dead Beat Current Control 129
5.2.5 Model Predictive Current Control 131
5.2.5.1 Analysis of Discretized System Model Dynamics 134
5.2.5.2 Cost Function Assessment 135
5.3 Simulation Results and Analysis 137
5.3.1 Results in Steady-State Operating Mode 138
5.3.2 Results in Dynamic Operating Mode 139
5.3.3 Comparative Assessment of the Current Controllers 145
5.3.4 Hardware Implementation 145
5.3.4.1 Hardware Components 147
5.3.4.2 Digital Implementation 150
5.4 Experimental Results 151
5.5 Future Scope 153
5.6 Conclusion 154
References 155
6 Multilevel Converter for Static Synchronous Compensators:
State-of-the-Art, Applications and Trends 159
Dayane do Carmo Mendonça, Renata Oliveira de Sousa, João Victor Matos
Farias, Heverton Augusto Pereira, Seleme Isaac Seleme Júnior and Allan
Fagner Cupertino
6.1 Introduction 160
6.2 STATCOM Realization 164
6.2.1 Two-Level Converters 164
6.2.2 Early Multilevel Converters 168
6.2.3 Cascaded Multilevel Converters 170
6.2.4 Summary of Topologies 174
6.3 STATCOM Control Objectives 175
6.3.1 Operating Principle 175
6.3.2 Control Objectives 176
6.3.3 Modulation Schemes 179
6.3.3.1 Nlc 181
6.3.3.2 Ps-pwm 181
6.4 Benchmarking of Cascaded Topologies 187
6.4.1 Design Assumptions 187
6.4.1.1 Y-chb 190
6.4.1.2 ¿-chb 191
6.4.1.3 Hb-mmc 193
6.4.1.4 Fb-mmc 196
6.4.2 Current Stress in Semiconductor Devices 198
6.4.3 Current Stress in Submodule Capacitor 201
6.4.4 Comparison of Characteristics 205
6.5 STATCOM Trends 209
6.5.1 Cost Reduction 209
6.5.2 Reliability Requirements 212
6.5.3 Modern Grid Codes Requirements 215
6.5.4 Energy Storage Systems 216
6.6 Conclusions and Future Trends 217
References 218
7 Topologies and Comparative Analysis of Reduced Switch Multilevel
Inverters for Renewable Energy Applications 221
Aishwarya V. and Gnana Sheela K.
7.1 Introduction 221
7.2 Reduced-Switch Multilevel Inverters 224
7.3 Comparative Analysis 251
7.4 Conclusion 258
References 258
8 A Novel Step-Up Switched-Capacitor-Based Multilevel Inverter Topology
Feasible for Green Energy Harvesting 265
Erfan Hallaji and Kazem Varesi
8.1 Introduction 266
8.2 Proposed Basic Topology 269
8.3 Proposed Extended Topology 270
8.3.1 First Algorithm (P 1) 270
8.3.2 Second Algorithm (P 2) 271
8.4 Operational Mode 272
8.4.1 Mode A 275
8.4.2 Mode B 275
8.4.3 Mode c 275
8.4.4 Mode d 276
8.4.5 Mode E 276
8.4.6 Mode F 277
8.4.7 Mode G 277
8.4.8 Mode H 277
8.4.9 Mode I 278
8.4.10 Mode J 278
8.4.11 Mode K 279
8.4.12 Mode l 279
8.4.13 mode m 279
8.4.14 Mode N 280
8.4.15 Mode O 280
8.4.16 Mode P 281
8.4.17 Mode Q 281
8.5 Standing Voltage 282
8.5.1 Standing Voltage (SV) for the First Algorithm (P 1) 283
8.5.2 Standing Voltage (SV) for the Second Algorithm (P 2) 283
8.6 Proposed Cascaded Topology 283
8.6.1 First Algorithm (S 1) 284
8.6.2 Second Algorithm (S 2) 284
8.6.3 Third Algorithm (S 3) 284
8.6.4 Fourth Algorithm (S 4) 285
8.6.5 Fifth Algorithm (S 5) 285
8.6.6 Sixth Algorithm (S 6) 286
8.7 Modulation Method 286
8.8 Efficiency and Losses Analysis 287
8.8.1 Switching Losses 287
8.8.2 Conduction Losses 288
8.8.3 Ripple Losses 288
8.8.4 Efficiency 288
8.9 Capacitor Design 289
8.10 Comparison Results 291
8.11 Simulation Results 295
8.12 Conclusion 299
References 299
9 Classification of Conventional and Modern Maximum Power Point Tracking
Techniques for Photovoltaic Energy Generation Systems 303
Mohammed Salah Bouakkaz, Ahcene Boukadoum, Omar Boudebbouz, Nadir
Boutasseta, Issam Attoui and Ahmed Bouraiou
9.1 Introduction 304
9.1.1 Classification of MPPT Techniques 306
9.1.2 MPPT Algorithms Based on PV Side Parameters 307
9.2 MPPT Algorithms Based on Load Side Parameters 307
9.3 Conventional MPPT Algorithms 308
9.3.1 Indirect Techniques 308
9.3.1.1 MPPT Based on Constant Voltage (CV) 308
9.3.1.2 Fractional Voltage (FV) Technique 309
9.3.1.3 Fractional Currents (FC) Technique 310
9.3.2 Direct Techniques 310
9.3.2.1 Hill Climbing (HC) Technique 311
9.3.2.2 Perturb & Observe (P&O) Technique 312
9.3.2.3 Incremental Conductance (IC) 313
9.4 Soft Computing (SC) MPPT Techniques 314
9.4.1 MPPT Techniques Based on Artificial Intelligence (AI) 314
9.4.1.1 Fuzzy Logic Control (FLC) Technique 314
9.4.1.2 Artificial Neural Network (ANN) 316
9.4.1.3 Adaptive Neuro Fuzzy Inference System (anfis) 316
9.4.1.4 The Bayesian Network (BN) 317
9.4.2 Bioinspired (BI)-Based MPPT Techniques 317
9.4.2.1 Particle Swarm Optimization (PSO) 317
9.4.2.2 Whale Optimization Algorithm (WOA) 318
9.4.2.3 Moth-Flame Optimization (MFO) 322
9.5 Hybrid MPPT Techniques 322
9.5.1 Conventional with Conventional (CV/CV) 322
9.5.1.1 Fractional Current (FC) with Incremental Conductance (IC) 323
9.5.2 Soft Computing with Soft Computing (SC/SC) 323
9.5.2.1 Fuzzy Logic Control with Genetic Algorithm (FLC/GA) 323
9.5.3 Conventional with Soft Computing (CV/SC) 324
9.5.3.1 Hill Climbing with Fuzzy Logic Control (hc/flc) 324
9.5.4 Other Classifications of Hybrid Techniques 325
9.6 Discussion 325
9.7 Conclusion 327
References 328
10 A Simulation Analysis of Maximum Power Point Tracking Techniques for
Battery-Operated PV Systems 335
Pankaj Sahu and Rajiv Dey
10.1 Introduction 336
10.2 Background of Conventional MPPT Methods 339
10.2.1 Perturb & Observe (P&O) 340
10.2.2 Incremental Conductance (IC) 341
10.2.3 Fractional Short Circuit Current (FSCC) 342
10.2.4 Fractional Open Circuit Voltage (FOCV) 343
10.2.5 Ripple Correlation Control (RCC) 344
10.3 Simulink Model of PV System with MPPT 348
10.4 Results and Discussions 350
10.4.1 (a) Simulation Results for P&O Method 351
10.4.2 (b) Simulation Results for Incremental Conductance (IC) Method 356
10.4.3 (c) Fractional Open Circuit Voltage (FOCV) Method 361
10.4.4 (d) Fractional Short Circuit Current (FSCC) Method 366
10.4.5 (e) Ripple Correlation Control (RCC) 371
10.4.6 (f) Performance Comparison 376
10.5 Conclusion 377
References 378
11 Power Electronics: Technology for Grid-Tied Solar Photovoltaic Power
Generation Systems 381
K. Sateesh Kumar, A. Kirubakaran, N. Subrahmanyam and Umashankar
Subramaniam
11.1 Introduction 382
11.2 Grid-Tied SPVPGS Technology 383
11.2.1 Module Inverters 384
11.2.2 String Inverters 385
11.2.3 Multistring Inverters 386
11.2.4 Central Inverters 386
11.3 Classification of PV Inverter Configurations 386
11.3.1 Single-Stage Isolated Inverter Configuration 387
11.3.2 Single-Stage Nonisolated Inverter Configuration 387
11.3.3 Two-Stage Isolated Inverter Configuration 388
11.3.4 Two-Stage Nonisolated Inverter Configuration 389
11.4 Analysis of Leakage Current in Nonisolated Inverter Topologies 390
11.5 Important Standards Dealing with the Grid-Connected Spvpgs 393
11.5.1 dc Current Injection and Leakage Current 393
11.5.2 Individual Harmonic Distortion and Total Harmonic Distortion 395
11.5.3 Voltage and Frequency Requirements 395
11.5.4 Reactive Power Capability 395
11.5.5 Anti-Islanding Detection 395
11.6 Various Topologies of Grid-Tied SPVPGS 396
11.6.1 AC Module Topologies 396
11.6.2 String Inverter Topologies 399
11.6.3 Multistring Inverter Topologies 405
11.6.4 Central Inverter Topologies 407
11.7 Scope for Future Research 415
11.8 Conclusions 415
References 416
12 Hybrid Solar-Wind System Modeling and Control 419
Issam Attoui, Naceredine Labed, Salim Makhloufi, Mohammed Salah Bouakkaz,
Ahmed Bouraiou, Nadir Boutasseta, Nadir Fergani and Brahim Oudjani
12.1 Introduction 420
12.2 Description of the Proposed System 424
12.3 Model of System 425
12.3.1 Model of Wind Turbine 425
12.3.2 Dynamic Model of the DFIG 426
12.3.3 Mathematic Model of Filter 428
12.3.4 Medium-Term Energy Storage 429
12.3.5 Short-Term Energy Storage 429
12.3.6 Wind Speed Model 430
12.3.7 Photovoltaic Array Model 430
12.3.8 Boost Converter Model 432
12.4 System Control 433
12.4.1 Grid Side Converter GSC Control 434
12.4.2 Rotor Side Converter RSC Control 434
12.4.3 MPPT Control Algorithm for Wind Turbine 435
12.4.4 Two-Level Energy Storage System and Control Strategy 435
12.4.5 PSO-Based GMPPT for PV System 435
12.5 Results and Interpretation 438
12.6 Conclusion 445
References 445
13 Static/Dynamic Economic-Environmental Dispatch Problem Using Cuckoo
Search Algorithm 453
Larouci Benyekhlef, Benasla Lahouari and Sitayeb Abdelkader
13.1 Introduction 454
13.2 Problem Formulation 455
13.2.1 Static Economic Dispatch 455
13.2.2 Dynamic Economic Dispatch (DED) 456
13.3 Calculation of CO2, Ch4, and N2O Emitted During the Combustion 457
13.3.1 Calculation of CO2 457
13.3.2 Calculating CH4 and N2O Emissions 458
13.4 The Cuckoo Search Algorithms 459
13.5 Application 460
13.5.1 Case I: The Static Economic Dispatch 463
13.5.2 Case II: The Dynamic Economic Dispatch 465
13.6 Conclusions 470
References 471
14 Power Electronics Converters for EVs and Wireless Chargers: An Overview
on Existent Technology and Recent Advances 475
Sahand Ghaseminejad Liasi, Faezeh Kardan and Mohammad Tavakoli Bina
14.1 Introduction 476
14.2 Hybrid Power System for EV Technology 477
14.3 DC/AC Converters to Drive the EV 478
14.4 DC/DC Converters for EVs 479
14.4.1 Isolated and Nonisolated DC/DC Converters for EV Application 479
14.4.2 Multi-Input DC/DC Converters in Hybrid EVs 480
14.5 WBG Devices for EV Technology 481
14.6 High-Power and High-Density DC/DC Converters for Hybrid and EV
Applications 483
14.7 dc Fast Chargers and Challenges 484
14.7.1 Fast-Charging Station Architectures 484
14.7.2 Impacts of Fast Chargers on Power Grid 488
14.7.3 Fast-Charging Stations Connected to MV Grid and Challenges 489
14.7.3.1 SST-Based EV Fast-Charging Station 490
14.8 Wireless Charging 491
14.8.1 Short History of Wireless Charging 492
14.8.2 Proficiencies 493
14.8.3 Deficiencies 493
14.9 Standards 494
14.9.1 Sae J 1772 494
14.9.1.1 Revisions of SAE J 1772 495
14.9.2 Iec 62196 495
14.9.3 Sae J 2954 497
14.10 WPT Technology in Practice 497
14.11 Converters 499
14.12 Resonant Network Topologies 501
14.13 Appropriate DC/DC Converters 501
14.14 Single-Ended Wireless EV Charger 502
14.15 WPT and EV Motor Drive Using Single Inverter 505
14.15.1 Problem Definition 507
14.15.2 Wave Shaping Analysis 507
14.15.3 Convertor System 510
14.15.4 WPT System and Motor Drive Integration 512
14.16 Conclusion 513
References 513
15 Recent Advances in Fast-Charging Methods for Electric Vehicles 519
R. Chandrasekaran, M. Sathishkumar Reddy, B. Raja and K. Selvajyothi
15.1 Introduction 519
15.2 Levels of Charging 520
15.2.1 Level 1 Charging 520
15.2.2 Level 2 Charging 520
15.2.3 Level 3 Charging 522
15.3 EV Charging Standards 523
15.4 Battery Charging Methods 524
15.5 Constant Voltage Charging 525
15.6 Constant Current Charging 526
16.7 Constant Current-Constant Voltage (CC-CV) Charging 527
15.8 Multicurrent Level Charging 528
15.9 Pulse Charging 529
15.10 Converters and Its Applications 530
15.10.1 Buck Converter 532
15.10.2 Boost Converter 533
15.10.3 Interleaved Buck Converter 534
15.10.4 Interleaved Boost Converter 535
15.11 Design of DC-DC Converters 536
15.12 Results and Discussions 538
15.13 Conclusion 542
References 543
16 Recent Advances in Wireless Power Transfer for Electric Vehicle Charging
545
Sivagami K., Janamejaya Channegowda and Damodharan P.
16.1 Need for Wireless Power Transfer (WPT) in Electric Vehicles (EV) 546
16.2 WPT Theory 546
16.3 Operating Principle of IPT 550
16.3.1 Ampere's Law 551
16.3.2 Faraday's Law 551
16.4 Types of Wires 552
16.4.1 Litz Wire 552
16.4.2 Litz Magneto-Plate Wire (LMPW) 552
16.4.3 Tubular Conductor 552
16.4.4 REBCO Wire 553
16.4.5 Copper Clad Aluminium Wire 553
16.5 Ferrite Shapes 553
16.6 Couplers 554
16.7 Types of Charging 556
16.7.1 Static Charging 556
16.7.2 Dynamic Charging 558
16.7.3 Quasi-Dynamic Charging 559
16.8 Compensation Techniques 560
16.9 Power Converters in WPT Systems 564
16.9.1 Primary Side Converter 565
16.9.1.1 Unidirectional Charger 565
16.9.1.2 Bidirectional Charger 566
16.9.2 Secondary Side Converter 567
16.9.3 Recent Novel Converter 567
16.10 Standards 567
16.11 Conclusion 570
References 570
17 Flux Link Control Modulation Technique for Improving Power Transfer
Characteristics of Bidirectional DC/DC Converter Used in FCEVS 573
Bandi Mallikarjuna Reddy, Naveenkumar Marati, Kathirvel Karuppazhagi and
Balraj Vaithilingam
17.1 Introduction 574
17.2 GDAB-IBDC Converter 575
17.2.1 Analysis and Modeling of GDAB-IBDC 576
17.3 FLC Modulation Technique 580
17.3.1 Modes of Operation of GDAB-IBDC Converter 582
17.3.2 Analytical Modeling of SPS and FLC Modulation 583
17.4 Dead Band Analysis of GDAB-IBDC Converter 589
17.5 Simulation and Results 591
17.6 Conclusion 598
References 598
Index 601