Work with Apache Spark using Scala to deploy and set up single-node, multi-node, and high-availability clusters. This book discusses various components of Spark such as Spark Core, DataFrames, Datasets and SQL, Spark Streaming, Spark MLib, and R on Spark with the help of practical code snippets for each topic. Practical Apache Spark also covers the integration of Apache Spark with Kafka with examples. You'll follow a learn-to-do-by-yourself approach to learning - learn the concepts, practice the code snippets in Scala, and complete the assignments given to get an overall exposure.
On completion, you'll have knowledge of the functional programming aspects of Scala, and hands-on expertise in various Spark components. You'll also become familiar with machine learning algorithms with real-time usage.
What You Will LearnDiscover the functional programming features of Scala
Understand the completearchitecture of Spark and its componentsIntegrate Apache Spark with Hive and Kafka
Use Spark SQL, DataFrames, and Datasets to process data using traditional SQL queries
Work with different machine learning concepts and libraries using Spark's MLlib packages
Who This Book Is For
Developers and professionals who deal with batch and stream data processing.
On completion, you'll have knowledge of the functional programming aspects of Scala, and hands-on expertise in various Spark components. You'll also become familiar with machine learning algorithms with real-time usage.
What You Will LearnDiscover the functional programming features of Scala
Understand the completearchitecture of Spark and its componentsIntegrate Apache Spark with Hive and Kafka
Use Spark SQL, DataFrames, and Datasets to process data using traditional SQL queries
Work with different machine learning concepts and libraries using Spark's MLlib packages
Who This Book Is For
Developers and professionals who deal with batch and stream data processing.