Robert Abrahart / Linda See / Dimitri P. Solomatine (eds.)Computational Intelligence and Technological Developments in Water Applications
Practical Hydroinformatics
Computational Intelligence and Technological Developments in Water Applications
Herausgegeben:Abrahart, Robert J.; See, Linda M.; Solomatine, Dimitri P.
Robert Abrahart / Linda See / Dimitri P. Solomatine (eds.)Computational Intelligence and Technological Developments in Water Applications
Practical Hydroinformatics
Computational Intelligence and Technological Developments in Water Applications
Herausgegeben:Abrahart, Robert J.; See, Linda M.; Solomatine, Dimitri P.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hydroinformatics is an emerging subject that is expected to gather speed, momentum and critical mass throughout the forthcoming decades of the 21st century. This book provides a broad account of numerous advances in that field - a rapidly developing discipline covering the application of information and communication technologies, modelling and computational intelligence in aquatic environments. A systematic survey, classified according to the methods used (neural networks, fuzzy logic and evolutionary optimization, in particular) is offered, together with illustrated practical applications for solving various water-related issues. ... …mehr
Andere Kunden interessierten sich auch für
- Eric Craswell / Mike Bonell / Deborah Bossio / Siegfried Demuth / Nick van de Giesen (eds.)Integrated Assessment of Water Resources and Global Change83,99 €
- Matthew ZentnerDesign and impact of water treaties74,99 €
- Alireza HajianApplication of Soft Computing and Intelligent Methods in Geophysics125,99 €
- Raveendra Kumar RaiThe Yamuna River Basin81,99 €
- Vladimir AranaWater and Territory in Latin America74,99 €
- Intelligence Systems in Environmental Management: Theory and Applications110,99 €
- Reviving the Dying Giant110,99 €
-
-
-
Hydroinformatics is an emerging subject that is expected to gather speed, momentum and critical mass throughout the forthcoming decades of the 21st century. This book provides a broad account of numerous advances in that field - a rapidly developing discipline covering the application of information and communication technologies, modelling and computational intelligence in aquatic environments. A systematic survey, classified according to the methods used (neural networks, fuzzy logic and evolutionary optimization, in particular) is offered, together with illustrated practical applications for solving various water-related issues. ...
Produktdetails
- Produktdetails
- Water Science and Technology Library 68
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 11575412, 978-3-540-79880-4
- 2008
- Seitenzahl: 524
- Erscheinungstermin: 4. November 2008
- Englisch
- Abmessung: 241mm x 160mm x 33mm
- Gewicht: 937g
- ISBN-13: 9783540798804
- ISBN-10: 3540798803
- Artikelnr.: 23833485
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Water Science and Technology Library 68
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 11575412, 978-3-540-79880-4
- 2008
- Seitenzahl: 524
- Erscheinungstermin: 4. November 2008
- Englisch
- Abmessung: 241mm x 160mm x 33mm
- Gewicht: 937g
- ISBN-13: 9783540798804
- ISBN-10: 3540798803
- Artikelnr.: 23833485
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Hydroinformatics: Integrating Data and Models.- Some Future Prospects in Hydroinformatics.- Data-Driven Modelling: Concepts, Approaches and Experiences.- Artificial Neural Network Models.- Neural Network Hydroinformatics: Maintaining Scientific Rigour.- Neural Network Solutions to Flood Estimation at Ungauged Sites.- Rainfall-Runoff Modelling: Integrating Available Data and Modern Techniques.- Dynamic Neural Networks for Nonstationary Hydrological Time Series Modeling.- Visualisation of Hidden Neuron Behaviour in a Neural Network Rainfall-Runoff Model.- Correction of Timing Errors of Artificial Neural Network Rainfall-Runoff Models.- Data-Driven Streamflow Simulation: The Influence of Exogenous Variables and Temporal Resolution.- Groundwater Table Estimation Using MODFLOW and Artificial Neural Networks.- Neural Network Estimation of Suspended Sediment: Potential Pitfalls and Future Directions.- Models Based on Fuzzy Logic.- Fuzzy Logic-Based Approaches in Water Resource System Modelling.- Fuzzy Rule-Based Flood Forecasting.- Development of Rainfall-Runoff Models Using Mamdani-Type Fuzzy Inference Systems.- Using an Adaptive Neuro-fuzzy Inference System in the Development of a Real-Time Expert System for Flood Forecasting.- Building Decision Support Systems based on Fuzzy Inference.- Global and Evolutionary Optimization.- Global and Evolutionary Optimization for Water Management Problems.- Conditional Estimation of Distributed Hydraulic Conductivity in Groundwater Inverse Modeling: Indicator-Generalized Parameterization and Natural Neighbors.- Fitting Hydrological Models on Multiple Responses Using the Multiobjective Evolutionary Annealing-Simplex Approach.- Evolutionary-based Meta-modelling: The Relevance of Using Approximate Models in Hydroinformatics.- Hydrologic Model Calibration Using Evolutionary Optimisation.- Randomised Search Optimisation Algorithms and Their Application in the Rehabilitation of Urban Drainage Systems.- Neural Network Hydrological Modelling:An Evolutionary Approach.- Emerging Technologies.- Combining Machine Learning and Domain Knowledge in Modular Modelling.- Precipitation Interception Modelling Using Machine Learning Methods - The Dragonja River Basin Case Study.- Real-Time Flood Stage Forecasting Using Support Vector Regression.- Learning Bayesian Networks from Deterministic Rainfall-Runoff Models and Monte Carlo Simulation.- Toward Bridging the Gap Between Data-Driven and Mechanistic Models: Cluster-Based Neural Networks for Hydrologic Processes.- Applications of Soft Computing to Environmental Hydroinformatics with Emphasis on Ecohydraulics Modelling.- Data-Driven Models for Projecting Ocean Temperature Profile from Sea Surface Temperature.- Model Integration.- Uncertainty Propagation in Ensemble Rainfall Prediction Systems used for Operational Real-Time Flood Forecasting.- OpenMI - Real Progress Towards Integrated Modelling.- Hydroinformatics - The Challenge for Curriculum and Research, and the "Social Calibration"of Models.- A New Systems Approach to Flood Management in the Yangtze River, China.- Open Model Integration in Flood Forecasting.
Hydroinformatics: Integrating Data and Models.- Some Future Prospects in Hydroinformatics.- Data-Driven Modelling: Concepts, Approaches and Experiences.- Artificial Neural Network Models.- Neural Network Hydroinformatics: Maintaining Scientific Rigour.- Neural Network Solutions to Flood Estimation at Ungauged Sites.- Rainfall-Runoff Modelling: Integrating Available Data and Modern Techniques.- Dynamic Neural Networks for Nonstationary Hydrological Time Series Modeling.- Visualisation of Hidden Neuron Behaviour in a Neural Network Rainfall-Runoff Model.- Correction of Timing Errors of Artificial Neural Network Rainfall-Runoff Models.- Data-Driven Streamflow Simulation: The Influence of Exogenous Variables and Temporal Resolution.- Groundwater Table Estimation Using MODFLOW and Artificial Neural Networks.- Neural Network Estimation of Suspended Sediment: Potential Pitfalls and Future Directions.- Models Based on Fuzzy Logic.- Fuzzy Logic-Based Approaches in Water Resource System Modelling.- Fuzzy Rule-Based Flood Forecasting.- Development of Rainfall-Runoff Models Using Mamdani-Type Fuzzy Inference Systems.- Using an Adaptive Neuro-fuzzy Inference System in the Development of a Real-Time Expert System for Flood Forecasting.- Building Decision Support Systems based on Fuzzy Inference.- Global and Evolutionary Optimization.- Global and Evolutionary Optimization for Water Management Problems.- Conditional Estimation of Distributed Hydraulic Conductivity in Groundwater Inverse Modeling: Indicator-Generalized Parameterization and Natural Neighbors.- Fitting Hydrological Models on Multiple Responses Using the Multiobjective Evolutionary Annealing-Simplex Approach.- Evolutionary-based Meta-modelling: The Relevance of Using Approximate Models in Hydroinformatics.- Hydrologic Model Calibration Using Evolutionary Optimisation.- Randomised Search Optimisation Algorithms and Their Application in the Rehabilitation of Urban Drainage Systems.- Neural Network Hydrological Modelling:An Evolutionary Approach.- Emerging Technologies.- Combining Machine Learning and Domain Knowledge in Modular Modelling.- Precipitation Interception Modelling Using Machine Learning Methods - The Dragonja River Basin Case Study.- Real-Time Flood Stage Forecasting Using Support Vector Regression.- Learning Bayesian Networks from Deterministic Rainfall-Runoff Models and Monte Carlo Simulation.- Toward Bridging the Gap Between Data-Driven and Mechanistic Models: Cluster-Based Neural Networks for Hydrologic Processes.- Applications of Soft Computing to Environmental Hydroinformatics with Emphasis on Ecohydraulics Modelling.- Data-Driven Models for Projecting Ocean Temperature Profile from Sea Surface Temperature.- Model Integration.- Uncertainty Propagation in Ensemble Rainfall Prediction Systems used for Operational Real-Time Flood Forecasting.- OpenMI - Real Progress Towards Integrated Modelling.- Hydroinformatics - The Challenge for Curriculum and Research, and the "Social Calibration"of Models.- A New Systems Approach to Flood Management in the Yangtze River, China.- Open Model Integration in Flood Forecasting.