Volatility is a critical parameter when measuring the size of the errors made in modelling returns and other nonlinear nonstationary time series data. The Autoregressive Integrated Moving-Average (ARIMA) model is a linear process in time series; whilst in the nonlinear system, the Generalised Autoregressive Conditional Heteroskedasticity (GARCH) and Markov Switching GARCH (MS-GARCH) models have been widely applied. In statistical learning theory, Support Vector Regression (SVR) plays a significant role in predicting nonlinear and nonstationary time series data. The book contains a new class model comprised a combination of a novel derivative Empirical Mode Decomposition (EMD), averaging intrinsic mode function (aIMF) and a novel of multiclass SVR using mean reversion and coefficient of variance (CV) to predict financial data i.e. EUR-USD exchange rates. The novel aIMF is capable of smoothing and reducing noise, whereas the novel of multiclass SVR model can predict exchange rates.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno