This book connects predictive analytics and simulation analytics, with the end goal of providing Rich Information to stakeholders in complex systems to direct data-driven decisions. Readers will explore methods for extracting information from data, work with simple and complex systems, and meld multiple forms of analytics for a more nuanced understanding of data science. The methods can be readily applied to business problems such as demand measurement and forecasting, predictive modeling, pricing analytics including elasticity estimation, customer satisfaction assessment, market research, new product development, and more. The book includes Python examples in Jupyter notebooks, available at the book's affiliated Github.
This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.
This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.
"Throughout the book there are extensive references to websites, in the form of footnotes ... . Examples, very detailed and very well explained, are often centered on business scenarios. The author recommends its use as a textbook in an academic setting. ... this book makes for an excellent reference manual ... this book offers an overall description of how business forecasts are made, helping them understand what they pay their data scientists for." (Andrea Paramithiotti, Computing Reviews, March 19, 2024)